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We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG)

using a minimal model which supports quadratic band touching points. We show that a one dimensional

(1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads

to the generation of zero-energy anisotropic massless Dirac fermions and finite energy Dirac points

with tunable velocities. The electric field superlattice maps onto a coupled chain model comprised of

‘‘topological’’ edge modes. 2D superlattice modulations are shown to lead to gaps on the mini-Brillouin

zone boundary but do not, for certain symmetries, gap out the quadratic band touching point. Such

potential variations, induced by impurities and rippling in biased BLG, could lead to subgap modes which

are argued to be relevant to understanding transport measurements.
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Superlattices provide a route to band structure engineer-
ing in semiconductors [1]. In graphene [2], a superlattice
(SL) potential has been shown to lead to anisotropic Fermi
velocity renormalization [3], and generation of new Dirac
points in the spectrum [4–7] resulting from the chiral
nature of massless Dirac excitations. Such graphene SLs
have been studied by epitaxial growth of graphene on a
Ir(111) surface [8,9]. Superlattice effects have also been
studied in a topological insulator in proximity to a helical
spin density wave [10], and in graphene subject to a
magnetic SL [11,12]. However, apart from transfer matrix
studies of 1D Krönig-Penney models [7,13], SLs in bilayer
graphene (BLG) have not been carefully explored.

Besides band structure engineering, there is a second
motivation to study such BLG SLs. On theoretical grounds,
BLG is an attractive candidate for transistor applications
since it has a tunable gap which varies in proportion to the
electric field perpendicular to the layers [14,15]. However,
transport measurements on BLG samples do not show
strong suppression of conductance at low temperatures
expected on theoretical grounds [14,15] or from optical
absorption measurements [16]. Instead, the transport data
shows evidence for variable range hopping conduction
[17–19] or a suppressed band gap [18,20]. It has been
proposed that the observed excess conductance arises
from edge states [21], but transport measurements in a
Corbino geometry do not support this scenario [22],
suggesting the existence of disorder-induced low energy
modes in the bulk. To the extent that disorder potentials can
be decomposed into Fourier components, we expect to
learn something useful about disordered BLG by studying
the simpler problem of periodic potential modulations
in BLG.

In this Letter, we study the band structures of BLG
SLs, arising from periodic modulations of the chemical

potential and the bias, using an effective low energy
Hamiltonian. Our main results are the following.
(i) Although the minimal model of BLG has quadratic
band touching points, we find, remarkably, that a weak
1D chemical potential modulation leads to the generation
of linearly dispersing massless Dirac fermions with a
tunable and anisotropic velocity. These Dirac fermion ex-
citations are robust and rely on the chiral nature of the BLG
quasiparticles. Beyond a critical modulation amplitude,
these Dirac modes get gapped out. (ii) An electric field
SL is shown to support linearly dispersing massless Dirac
fermions and finite energy Dirac points which survive even
for strong modulations. We provide a picture for these
modes within a novel coupled chain model of ‘‘topologi-
cal’’ edge states. (iii) For 2D SLs, we show that for
chemical potential and electric field SLs the quadratic
band touching points are protected for symmetric SLs
with C4 or C6 symmetry. (iv) We compute the density of
states for biased BLG with superimposed 1D potential
modulations, and find a plethora of subgap modes which
we argue are important for understanding transport data.
While our results on 1D SLs overlap with work on Krönig-
Penney models [13,23], our analysis provides simpler in-
sights, highlights the role of the quasiparticle chirality,
and is applied here to more general potential profiles as
well as to 2D SLs.
Effective Hamiltonian approach.—The low energy

Hamiltonian for Bernal-stacked BLG can be obtained by
expanding its minimal tight-binding spectrum near one
of the Brillouin zone corners (K points) [14]. When the
bias (i.e., interlayer potential difference) is not too large,

j�j � t?, we find H ¼ c yĤc [14], where

Ĥ ¼ �v2
F

t?
0 ð�yÞ2
�2 0

� �
þ V1ðxÞ 0

0 V2ðxÞ
� �

; (1)
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and c T ¼ ðax; bxÞ, with a (b) being the electron operator

on the top (bottom) layer. Here, � ¼ �i@x þ @y, vF ¼ffiffiffi
3

p
td=2 � 106 m=s is the Fermi velocity, t � 3 eV is the

nearest neighbor hopping integral, d � 2:46 �A is the dis-
tance between neighboring atoms on the same sublattice,
V1;2 are the potentials on each layer, and t? � 0:15t is the
interlayer coupling. Unless stated, we set t ¼ d ¼ 1. We
will ignore intervalley scattering assuming the potentials
are varying slowly on the scale of d, so that identical
physics is expected around the other valley (at �K).
Such an approach has been successfully used to study
SLs in monolayer graphene [3,4].

To diagonalize Hkin, we Fourier transform and then

make a unitary transformation ap ¼ ð�p þ �pÞ=
ffiffiffi
2

p
,

bp ¼ e2i�pð�p � �pÞ=
ffiffiffi
2

p
, where cos�p ¼ px=p and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. This leads to Hkin ¼

P
pð"eðpÞ�y

p�p þ
"hðpÞ�y

p�pÞ. Here "e;hðpÞ ¼ �p2=2m� are energies of

electron (hole) states, with an effective mass m� �
t?=ð2v2

FÞ. This minimal model supports quadratic band
touching points at �K.

When V1;2ðxÞ are periodic, we can also Fourier

transform the SL potential to obtain HSL ¼P
p;G�

yðpÞWp;G�ðp�GÞ, where

Wp;G¼1

2

V1ðGÞþV2ðGÞe2i� V1ðGÞ�V2ðGÞe2i�
V1ðGÞ�V2ðGÞe2i� V1ðGÞþV2ðGÞe2i�

 !
; (2)

�yðpÞ ¼ ð�y
p ; �

y
pÞ, and � � �p�G � �p is the angle be-

tween momenta p�G and p. Our aim is to understand
the band structures of SLs described by Hkin þHSL. We
will study 1D SLs with period � along ŷ, so that the
reciprocal lattice vectors, fGg, are integer multiples ofQ ¼
ð0; 2�=�Þ, and the mini-Brillouin zone (MBZ) boundaries
are at py ¼ ��=�. We will also study 2D SLs.

1D chemical potential superlattice.—Imposing a peri-
odic potential V1ðx; yÞ ¼ V2ðx; yÞ ¼ Uðx; yÞ corresponds to
a chemical potential modulation. Numerically solving for
the band structure of a periodic 1D modulation using the
above effective Hamiltonian, we find a pair of zero-energy

Dirac points in the MBZ in the vicinity of each valley. This
is shown in Fig. 1 for a periodic steplike potential with
(i)Uðx; yÞ ¼ U for 0 � y < �=2 and (ii)Uðx; yÞ ¼ �U for
�=2 � y < �. With increasing U, these Dirac points move
away from each other along ŷ. Beyond a critical modula-
tion amplitude a full gap opens up.
The existence of two Dirac cones at each valley is deeply

rooted in the chiral nature of the low energy BLG quasi-
particles, which causes the matrix elements of Eq. (2) to
depend on the scattering angle �. For states with momenta
parallel to the modulation direction, � ¼ 0 or �, the off-
diagonal matrix elements vanish; the electron and hole
states then decouple, but electron-electron and hole-hole
mixing is allowed. However, in an extended zone scheme,
all such electron (hole) states within the first MBZ only
mix with electron (hole) states of higher (lower) energy,
and so the energy of these states will be globally shifted
down (up). This results in two level crossings along the
modulation direction, which are protected by the chirality
of the low energy BLG quasiparticles. If this electron-hole
decoupling was true for all momenta, we would see the two
parabolic bands crossing on a full circle in the MBZ, but
going to momenta (�px, py) leads to electron-hole mixing

that is linear in �px; this results in an avoided level
crossing and the robust emergence of two Dirac cones in
the MBZ.
The location and velocity anisotropy of Dirac cones, as

well as the critical modulation amplitude to gap them out,
can be predicted using perturbation theory in UðGÞ. The
second order energy correction of states with p ¼ ð0; pyÞ
is �Eð2ÞðpÞ ¼ P

n�0jUðnQÞj2=½"e;hðpÞ � "e;hðpþ nQÞ�.
Since "eðpÞ< "eðpþ nQÞ while "hðpÞ> "hðpþ nQÞ in
the MBZ, this correction is always negative (positive) for
electron (hole) states, as expected.
Thus, the two bands will intersect and cross linearly

at momenta (0, �p�
y), where p�2

y =2m� ¼ 2m�P
n�0

jUðnQÞj2=ðn2Q2 þ 2p�
ynQÞ. For weak modulations,

p�
y=Q � 1, and keeping only n ¼ �1, we estimate p�

y �ffiffiffi
2

p
m�jUðQÞj�=�. For a step profile, jUðQÞj ¼ 2U=�, and

jnj> 1 contributions are small.
For small �px away from the level crossing point, we

can estimate the electron-hole mixing term using perturba-
tion theory [24], and we find that the resulting eigenstates
have energies �p ¼ �ð16m�jUðQÞj2=jQj2Þ�px=p

�
y. The

crossing points at (0, �p�
y) are thus really massless Dirac

points in the full MBZ. We find velocities vy ¼ p�
y=m

� �ffiffiffi
2

p
�jUðQÞj=�, and vx ¼ 2vy for the anisotropic linear

dispersion.
Once these Dirac nodes reach the MBZ boundary, Bragg

scattering between them opens up a full gap. The critical
potential strength, jUcðQÞj for this is roughly estimated by

setting p�
y ¼ Q=2, which yields jUcðQÞj � �2=ð ffiffiffi

2
p

m��2Þ.
For a step profile, with � ¼ 60d, we findUc � 0:03twhich
is close to the numerical result 0:02t.
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FIG. 1 (color online). Energy spectrum for a 1D superlattice
with steplike chemical potential modulation of amplitude U. We
set � ¼ 60d, with [left panel] U ¼ 0:01t showing two Dirac
nodes split along ŷ near K, and with [right panel] U ¼ 0:04t
showing a full gap.
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1D electric field superlattice.—An electric field SL
corresponds to V1ðx; yÞ ¼ �V2ðx; yÞ ¼ Uðx; yÞ. Solving
for the resulting band structure, we find that it depends
sensitively on the modulation type. To illustrate this, we
consider a periodic potential, with UðyÞ ¼ 2Uð1� w=�Þ
for 0 � y < w, and UðyÞ ¼ �2Uw=� for w � y < �. We
have set the average potential on each layer to be zero. If
w ¼ �=2, the resulting symmetric SL is found to support a
pair of anisotropically dispersing massless Dirac fermions
at zero energy at (� p�

x, 0), as seen in Fig. 2 (left panel). In
addition, as shown in Fig. 2 (right panel), it supports a
Dirac point at nonzero positive (as well as negative) en-
ergies at (0, �=�) [or equivalently (0, ��=�)]. However,
an asymmetric SL, with w � �=2, leads to a gap for all
these Dirac fermions. More generally, we find that if the SL
potential commutes with a generalized parity operator, P ,
which corresponds to y ! �y followed by exchanging the
two layers of BLG, then these gapless Dirac points survive.
Breaking P leads to gaps.

A simple route to understanding these results that leads
to other interesting predictions is to view the SL as a
periodic array of ‘‘kinks’’ and ‘‘antikinks’’ where a kink
(antikink) corresponds to where the electric field flips from
pointing up (down) to pointing down (up). A single such
kink or antikink in the bias is well understood [21,25–27].
In the absence of interactions a kink (antikink) supports a

pair of right-moving (left-moving) ‘‘topological’’ edge
states near the K point for each spin. By time reversal,
these right and left movers get interchanged at the �K
point. These modes are depicted in Fig. 3. (Although these
modes were suggested to be topologically protected,
they are not truly stable against disorder; nevertheless
disorder-induced backscattering is weak [21].) At a kink,
we denote the higher (lower) energy edge state as � (0),
while we denote these states as �� (�0) at an antikink. Hence,
there are four points at each valley where kink and antikink
modes cross: two of these occur at zero energy (�� �0 and
��� 0 crossings), and two of them occur at nonzero energy
(�� �� and 0� �0 crossings). We will show below that
these crossing points evolve into massless Dirac fermion
modes in the MBZ of the SL. In order to see this, we
construct a tight-binding model of such coupled ‘‘topologi-
cal’’ edge states.
We observe that the Hamiltonian with the single kink

(or antikink) potential is invariant under P , since
P yHðyÞP ¼ �xHð�yÞ�x ¼ HðyÞ. The 0=�0 states are
even under P , while the �= �� states are odd under P
[25]. Let us then construct a reduced Hamiltonian which
describes the hybridization between neighboring edge
modes.
We begin with neighboring �� �0 modes at zero energy

and at a momentum p�
x (away from K). The hopping

between neighboring ‘‘wires’’ along ŷ is then between
states which have opposite velocities (since it is between
a kink and an antikink edge state) and it is between a
p-wave-like state (P -odd) and an s-wave-like state
(P even). Using the index n to label the wires, the inter-
chain hopping parameter will then alternate as ð�1Þng for
equally spaced wires and as gþ �,�gþ � (with � < g) if
pairs of wires are closer to each other [24]. Linearizing the
dispersion at the crossing point, and letting v0 denote the
velocity of the linearized modes,

HðpxÞ ¼ v0

X
n

½ð�1Þnðpx � p�
xÞcypxncpxn�

�X
n

½gð�1Þn þ ��ðcypxncpxnþ1 þ H:c:Þ; (3)

where p�
x is the location of the �� �0 crossing point

in the single kink or antikink problem, and cpxn

annihilates an electron on wire n with momentum px.
Let 	ðpxÞ � v0ðp� p�

xÞ. Fourier transforming, we

find HðpxÞ¼
P0
py

�yðpyÞ� 	hðpxÞ�ðpyÞ, where hðpxÞ ¼
½	ðpxÞ;�2g sinðpyÞ;�2� cosðpyÞ�, with �ðpyÞ ¼
ðcpy

cpyþ�ÞT , and
P0
py

runs over the MBZ. The dispersion

is thus E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2ðpxÞ þ 4�2cos2ðpyÞ þ 4g2sin2ðpyÞ

q
.

Consequently, when w ¼ �=2, and the Hamiltonian
commutes with P , we have � ¼ 0 and a Dirac cone is
generated at (p�

x, 0), consistent with numerical results.
When w � �=2, the Hamiltonian breaks P—we then

FIG. 3 (color online). Left: Spectrum of isolated kink (thin
dashed red line) and antikink (thick dashed blue line). Higher
(lower) energy modes are labeled � (0) at a kink and as �� (�0) at
an antikink. Right: Schematic of hopping between the �� ��
and �0� � states.
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FIG. 2 (color online). Energy spectrum for a 1D symmetric
(see text) electric field superlattice with � ¼ 60d and U ¼ 0:03t,
showing a pair of zero-energy massless Dirac fermions
at (� p�

x, 0) [left panel] and a nonzero-energy Dirac point at
(0, ��=�) [right panel].

PRL 107, 086801 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

086801-3



have � � 0, which leads to a gap 4�. Similar arguments
hold for the other zero-energy band crossing points. The
velocity of the Dirac fermions is highly anisotropic and
depends on g—this can be controlled by tuning the SL
period and amplitude.

The above analysis can also be repeated for the nonzero
energy (0� �0 and�� ��) crossings [24]; in the symmetric
case, w ¼ �=2, we find Dirac cones at (0, ��=�) on the
MBZ. Once again, a modulation with w � �=2 results in a
finite � and opening of band gap.

Interestingly, just as in polyacetylene, a domain wall
between a gapped region with w> �=2 and a gapped
region with w< �=2 leads to new subgap soliton modes.
Since each kink or antikink is itself like a domain wall,
these should be viewed as solitons in a soliton lattice.

2D superlattices.—We have also considered 2D chess-
boardlike SLs with fourfold rotation symmetry. For both
types of 2D SLs, chemical potential or electric field,
the quadratic band touching point remains intact when
the SL potential is ‘‘symmetric’’, V1;2ðxþ �=2; yÞ ¼
V1;2ðx; yþ �=2Þ ¼ �V1;2ðx; yÞ. This is consistent with

the fact that no Dirac points can be generated in a way
that conserves both topological charge and C4 (or C6)
symmetry [28]. For asymmetric SLs, higher order correc-
tions lead to modifications to the energy spectrum at theK
point [24]. For chemical potential SLs, the charge neutral-
ity point (CNP) shifts slightly in energy, due to higher
order effects which reflect particle-hole symmetry break-
ing. For electric field SLs, breaking generalized parity
opens a small gap at the K point [24].

Experimental implications.—Our work demonstrates
that SL modulations in BLG can generate new Dirac
fermion modes. Such modes are perturbatively stable to
interaction effects, and could be experimentally explored
by a suitable choice of substrates. Disorder will also lead to
such bias and chemical potential modulations, albeit in
random fashion. One source of such fluctuations is the
presence of charged impurities, embedded in the under-
lying substrate (SiO2) or, in the case of suspended BLG, in
the residue of the etching or washing process. Such impu-
rities are expected to locally shift the CNP, and to suppress
or enhance the band gap depending on the relative sign of
the bias and the impurity electric field [29]. If the impurity

lies close to the surface it can locally reverse the parity of
the interlayer bias leading to ‘‘topological’’ subgap modes.
Another source of SL fluctuations is rippling [30,31],
which would modulate the electric field perpendicular to
the bilayer at the ripple wavelength.
As a starting point to understanding the expected role of

chemical potential and electric field fluctuations, Fig. 4
shows density of states (DOS) plots of a biased SL with
periodic 1D modulations. In the absence of a SL, the DOS

diverges as 1=
ffiffiffiffi
E

p
at the gap edge arising from the 
p4

dispersion of modes near the gap edge. We find that both
chemical potential or bias modulations, cause low energy
subgap modes in this system that will renormalize the
average band gap, consistent with experiments. For chemi-
cal potential modulations, the subgap states are due to
the local shift in the CNP. At finite temperature, regions
with a slightly shifted CNP will have thermally activated
‘‘electron-hole’’ puddles that contribute to transport. For
bias modulations, weak modulations locally enhance or
suppress the band gap, while strong modulations form
‘‘topological’’ states in the bulk along interfaces where
the field reverses sign [21,25–27]. The energy of these
‘‘topological’’ midgap states decreases for large and dilute
fluctuations, as the overlap between edge mode wave
functions is reduced.
Random potential fluctuations will have two important

effects not captured in our study of periodic modulations.
First, it will cause the low energy density of states to
broaden, causing further suppression of the band gap pre-
dicted by the periodic modulation. Second, dilute localized
‘‘topological’’ states induced in the bulk by strong random
electric field modulations due to charged impurities will
contribute to transport through variable range hopping—
this is broadly consistent with the temperature dependence
of the resistance in biased BLG [17–19].
This work was supported by NSERC, an Ontario ERA,

and the Indian DST. M.K. and A. P. acknowledge the
hospitality of ICTS-TIFR (Bangalore).
Note Added.—After submission of this Letter, we re-

ceived a preprint of Ref. [32], which studies Dirac fermions
in 1D chemical potential superlattices in BLG and contains
results consistent with ours.
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