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We uncover the field-theoretical origin of symmetry relations for multifractal spectra at Anderson

transitions and at critical points of other disordered systems. We show that such relations follow from the

conformal invariance of the critical theory, which implies their general character. We also demonstrate that

for the Anderson localization problem the entire probability distribution for the local density of states

possesses a symmetry arising from the invariance of correlation functions of the underlying nonlinear �

model with respect to the Weyl group of the target space of the model.
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More than half a century after its discovery, Anderson
localization [1] remains a vibrant research field. One of the
central research directions is the physics of Anderson
transitions [2], including metal-insulator transitions and
transitions of quantum Hall type (i.e., between different
phases of topological insulators). Apart from electronic
conductors in semiconductor structures, experimental real-
izations include localization of light [3], cold atoms [4],
ultrasound [5], and optically driven atomic systems [6]. On
the theory side, the field received a strong boost through
the discovery of unconventional symmetry classes and the
development of a complete symmetry classification of
disordered systems [2,7–9]. These classes are character-
ized by additional particle-hole and/or chiral symmetries.
Examples include disordered superconductors and
graphene.

A remarkable property of Anderson transitions is the
multifractality of wave functions, describing their strong
fluctuations at criticality. Specifically, in d dimensions, the
wave function moments show anomalous multifractal
(MF) scaling with respect to the system size L,

Ldhjc ðrÞj2qi / L��q ; �q ¼ dðq� 1Þ þ �q; (1)

where h� � �i denotes the disorder average and �q are

anomalous MF exponents distinguishing the critical point
from a simple metallic phase (where �q � 0). Closely

related is the scaling of moments of the local density of
states (LDOS) �ðrÞ,

h�qi / L�xq ; xq ¼ �q þ qx�; (2)

where x� � x1 controls the scaling of the average LDOS,

h�i / L�x� . First steps towards experimental determina-
tion of MF spectra have been made recently [5,6,10].

In Ref. [11], an exact symmetry for MF exponents,

�q ¼ �1�q; (3)

was derived for any critical system in the conventional
Wigner-Dyson (WD) classes as a consequence of a more
general relation [12,13] for the LDOS distribution function
(and thus, for the LDOS moments),

P ð�Þ ¼ ��3P ð��1Þ; h�qi ¼ h�1�qi: (4)

Equation (4) is exact at the level of the nonlinear � model
and is fully general otherwise; i.e., it is equally applicable
to metallic, localized, and critical systems. While in gen-
eral � models are approximations to particular micro-
scopic systems, Eq. (3) is exact in view of universality of
the critical behavior [11]. See also [14].
The goal of the present work is to reveal the field-

theoretic basis underlying the symmetry relations (3) and
(4), and to generalize them to a broader class of systems.
First, using arguments arising from conformal invariance at
the transition, we show that relations analogous to (3) are
valid for a wide class of critical points in disordered
systems (that need not be Anderson transitions) character-
ized by multifractality. Second, focusing on the problem of
Anderson localization, we demonstrate that Eqs. (3) and
(4) are manifestations of the Weyl group symmetry of the
nonlinear �-model theory. Finally, we use this to general-
ize Eqs. (3) and (4) to the unconventional symmetry classes
C and CI (in the notation of Refs. [7,8]). At the end we
describe applications of our results to a number of specific
disordered systems.
We begin by presenting a general argument based on

(global) conformal invariance of a critical system in d
dimensions. Consider a system at criticality characterized
by operatorsOq representing moments of an observable of

interest. In the case of Anderson localization on which we

PRL 107, 086403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

0031-9007=11=107(8)=086403(5) 086403-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.086403


focus, this observable is the LDOS, and Oq corresponds to

�q, but one can apply the argument to a broader class of
systems. Generically, the spectrum of the scaling dimen-
sions xq of the operators Oq is convex, x00q < 0 (primes

denote derivatives with respect to q), satisfies x0 ¼ 0, and
becomes negative at sufficiently large (positive or nega-
tive) values of q [2]. Therefore, there is a single point q�
(in addition to q ¼ 0) such that xq� ¼ 0. Let us show that

q� > 0. Indeed, it is easy to see that the derivative x00 �
ðdxq=dqÞq¼0 ¼ �0 � dþ x�, where �0 � ðd�=dqÞq¼0 ¼
�00 controls the scaling of a typical wave function ampli-

tude, jc 2jtyp � L��0 . Normalization of the wave function

implies that �0 > d [2]. In the WD symmetry classes
where x� ¼ 0, this guarantees that x00 > 0. In the uncon-

ventional classes, x� may be nonzero, with either sign.

However, generalizing the conformal invariance argument
from Ref. [15], we can show that �0 � dþ x� determines

the typical localization length in a quasi-1D geometry,
implying again that x00 > 0. It follows immediately that

q� > 0.
According to the definition of the operators Oq, their

operator product expansion has the form [16]

O pðr1ÞOqðr2Þ � jr1 � r2jxpþq�xp�xqOpþq

�
r1 þ r2

2

�
: (5)

In general, the operator Opþq has nontrivial scaling with

the system size, hOpþqi / L�xpþq ; the existence of nega-

tive scaling dimensions distinguishes disordered critical
points from conventional ‘‘unitary’’ conformal field theo-
ries. However, in the case of p ¼ q� � q, the operator
on the right-hand side of (5) has zero scaling dimension
xq� ¼ 0. Therefore, the correlation function hOq��qðr1Þ
Oqðr2Þi does in fact not depend on the system size L

(i.e., on the infrared regularization of the theory). This
allows us to apply the standard argument from conformal
invariance [17] according to which the nonvanishing two-
point correlation function appearing in the expectation
value of (5) implies that the dimensions of the nonderiva-
tive [18] operators Oq��q and Oq are equal; i.e.,

xq ¼ xq��q: (6)

This is the generalized symmetry relation for MF expo-
nents. Note that in the case of Anderson transitions the
symmetry holds in general for the LDOS exponents xq
(the scaling dimensions of local field operators) rather
than for the wave function exponents �q. (For the WD

classes x� ¼ 0, so that xq ¼ �q.) The symmetry point

q�=2 remains unspecified by the above argument.
Below we show that a stronger symmetry relation be-

tween moments of the LDOS, valid for nonlinear�models
describing disordered systems of noninteracting fermions
in the WD classes (A, AI, AII) as well as those in the
Bogoliubov–de Gennes classes with preserved spin rota-
tion invariance (C;CI),

h�qi ¼ h�q��qi; (7)

has a group-theoretic origin. As a result, the symmetry
point q�=2 for these systems is determined solely by the
symmetry class and is independent of further details of the
problem (e.g., spatial dimensionality, presence or absence
of topological order, and whether the system is in a metal-
lic, insulating, or critical phase). Before presenting the
proof, let us first ask the following question: Assuming
that we know that (7) holds with q� depending on the
symmetry class only, what is a simple way to find q�? It
turns out that it suffices to analyze a zero-dimensional �
model, equivalent to a random matrix (RM) model.
To see this, let us consider a RM model and introduce a

small broadening � � � (where � is the mean level
spacing) for all levels. A level with energy � gives a
contribution ��=ð�2 þ �2Þ to the LDOS � at zero energy.
It is easy to see that for small � the zero-energy LDOS will
be governed by the level closest to zero. Thus, we get

h�qi /
Z

d�½�=ð�2 þ �2Þ�qPð�Þ; (8)

where Pð�Þ is the distribution of the lowest energy level.
For RM ensembles one has Pð�Þ / j�jml , where ml is the
multiplicity of the long roots for the symmetric space of
Hamiltonians. For all WD ensembles ml ¼ 0, for class C
ml ¼ 2 and for class CI ml ¼ 1. Equation (8) yields
h�qi / �mlþ1�q for q > ðml þ 1Þ=2 and h�qi / �q for q <
ðml þ 1Þ=2. This fixes the value of q� in the relation (7):

q� ¼ ml þ 1 ¼
8><
>:
1; WD classes;
2; class CI;
3; class C:

(9)

We turn now to the derivation of Eq. (7). The � models
are defined on symmetric superspaces G=K, where G is a
Lie supergroup and K is a compact subgroup fixed by a
Cartan involution [2,8,19]. We focus first on the unitary
WD class (A); in this case the �-model field QðrÞ ¼
gðrÞ�3gðrÞ�1 is a 4� 4 supermatrix satisfying Q2 ¼ 1.
Here gðrÞ 2 G and �3 is the third Pauli matrix in the
retarded-advanced (RA) space. The moments of the
LDOS at a point r0 are given by [12]

h�qi ¼
Z

DQ

�
1

2
ðQ11 �Q22 þQ12 �Q21Þbb

�
q
e�F ðQÞ;

(10)

where Q � Qðr0Þ, with indices 1,2 referring to the RA
decomposition and b; f to the boson-fermion one. The

factor e�F ðQÞ results from integrating outQðrÞ at the points
r � r0 and generically breaks the symmetry fromG toK as
a result of coupling the system to metallic reservoir(s). The
only important property of the function F ðQÞ is its invari-
ance with respect to the group K, i.e., F ðkQk�1Þ ¼ F ðQÞ
for any k 2 K. This follows from the corresponding
invariance of the action of the � model, including the
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boundary terms / Str�3QðrÞ appearing at points r coupled
to leads. In Ref. [12] the LDOS distribution function
corresponding to (10) was evaluated by using the ‘‘stan-
dard’’ (introduced by Efetov) parametrization of the Q
field [19], which led to Eq. (4). In order to uncover the
group-theoretic basis of the symmetry, we will use an
alternative parametrization. It is based on the Iwasawa
decomposition for symmetric superspaces [20,21] general-
izing the corresponding construction for classical noncom-
pact symmetric spaces [22]. By this decomposition, every
element g 2 G is represented as g ¼ nak with n 2 N,
a 2 A, and k 2 K, where A is a maximal Abelian sub-
group for G=K and N is a nilpotent group. The decom-
position is unique, once the set of positive roots is fixed.
(The corresponding root vectors form the basis of the Lie
algebra of N.)

It is convenient to switch to Q ¼ Q�3 and perform

a unitary rotation Q ! ~Q � UQU�1 by the matrix
U ¼ ð1þ i�1 þ i�2 þ i�3Þ=2 in the RA space, which
cyclically permutes Pauli matrices: U�jU

�1 ¼ �j�1.

The combination of Qij entering Eq. (10) then becomes

ð1=2ÞðQ11 �Q22 þQ12 �Q21Þbb ¼ ~Q22;bb: (11)

The Iwasawa decomposition of g leads to Q ¼
na2�3n

�1�3, where we used k�3k
�1 ¼ �3 and a�3a

�1 ¼
a2�3. Upon the rotation Q ! ~Q, this takes the form
~Q ¼ ~n~a2�2~n

�1�2, or explicitly

~Q ¼

1 � � �
0 1 � �
0 0 1 0

0 0 � 1

0
BBBBB@

1
CCCCCA

e2x 0 0 0

0 e2iy 0 0

0 0 e�2x 0

0 0 0 e�2iy

0
BBBBB@

1
CCCCCA

�

1 0 0 0

� 1 0 0

� � 1 �
� � 0 1

0
BBBBB@

1
CCCCCA; (12)

where � denote some nonzero matrix elements of nilpotent
matrices. The variables x and y (which correspond to �1 ¼
cosh�1 and �2 ¼ sin�2 in the standard parametrization
[19]) parametrize the Abelian group A. This group is non-
compact in the x direction and compact in the y direction. It
follows from (12) that the matrix element (11) is equal to
~Q22;bb ¼ e�2x. The integral (10) for the LDOS moments

thus becomes

h�qi ¼
Z
NA

DnDae�2�ðlnaÞe�2qxe�F ðna2�3n
�1�3Þ; (13)

where Dn and Da ¼ dxdy are the invariant (Haar) mea-

sures on N and A, respectively. The factor e�2�ðlnaÞ is the
super-Jacobian, with �ðlnaÞ being the half sum of positive
roots; for the present case

� ¼ �xþ iy: (14)

Next, we perform the n integration involving only the
last factor in the integrand of (13). For this purpose, we use
the Harish-Chandra integral theorem stating that for a
K-invariant function [fðgÞ ¼ fðkgk�1Þ for any k 2 K],

Z
N
dnfðnaÞ ¼ e�ðlnaÞIfðaÞ; IfðawÞ ¼ IfðaÞ: (15)

The central point is that the function IfðaÞ is invariant with
respect to the action w: a ! aw by any element w 2 W of
the Weyl group W of G=K. The classical version of the
theorem (15) can be found, e.g., in [23]; the supersymmet-
ric generalization (that we actually need) has been devel-
oped very recently [21]. The Weyl group acts on the Lie
algebra of A; its elements are reflections with respect to
hyperplanes orthogonal to roots. The element that will be
important for us here is the reflection x ! �x. Substituting
Eqs. (14) and (15), into (13), we obtain

h�qi ¼
Z

dxdyeð1�2qÞx�iyIF ðx; yÞ: (16)

Finally, by using the symmetry of IF ðx; yÞ with respect to

x ! �x, we obtain Eq. (4).
Thus, the symmetry relation (4) previously derived for

the WD classes is a consequence of the Weyl group invari-
ance. We can now extend this result to two new classes,
namely, C and CI. By inspecting the above derivation, one
can see that the value of q� ¼ 1 was determined by the
coefficient in front of x in the half sum of positive roots �,
Eq. (14). The analogous formulas for the classes C and CI
read � ¼ �3xþ 2iy1 þ iy2 and � ¼ �2xþ 2iy, repro-
ducing the values of q� obtained from the RM argument,
Eq. (9).
What about the remaining five symmetry classes? The

above derivation based on the Weyl group invariance is not
directly applicable to them because of a more complicated
structure of the �-model target space. Specifically, that
space contains an additional U(1) factor in the case of
the chiral classes AIII, BDI, and CII, and a Oð1Þ ¼ Z2

factor for the classes D and DIII. More work is needed to
explore the peculiar physics of Anderson localization in
these symmetry classes.
The obtained symmetry relations are confirmed by a

large body of analytical and numerical results for various
disordered systems. For the WD classes, supporting evi-
dence based on 2þ � expansion and simulations of a
power-law random banded matrix model was presented
in Ref. [11]. Since then, a wealth of numerical results on
the 2DAnderson transition in the symplectic class AII [24],
the integer quantum Hall transition (unitary class A) [25],
as well as the 3D transition in the orthogonal class AI [26]
have corroborated the relation (3).
A thoroughly investigated representative of symmetry

class C is the 2D spin quantum Hall (SQH) transition.
For this system, it was proven analytically that, in the
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bulk, x� ¼ 1=4, �2 ¼ �1=4, �3 ¼ �3=4 [27,28]. In

combination with the trivial values �0 ¼ �1 ¼ 0, this
yields x0 ¼ x3 ¼ 0, and x1 ¼ x2 ¼ 1=4, in agreement
with the symmetry relation (6) with q� ¼ 3. Furthermore,
these exponents have also been found for the SQH surface
multifractality, with the results x0 ¼ x3 ¼ 0 and x1 ¼
x2 ¼ 1=3 [29], again respecting the symmetry. Finally,
the MF spectrum at the 2D SQH transition was studied
numerically, both in the bulk and at the surface [28,30].
When expressed in terms of xq, the data perfectly agree

with the symmetry relation (6).
There also exists a model in class CI that has been

studied in detail. This is the model of 2D Dirac fermions
coupled to a random SU(2) gauge potential which is
described by a Wess-Zumino-Witten theory [31] and rep-
resents physics at the surface of a disordered 3D topologi-
cal superconductor [32]. Critical exponents for this model
are known exactly: x� ¼ 1=4 and �q ¼ 2ðq� 1Þð1� q=8Þ
[33], so that the LDOS MF spectrum reads xq¼
qð2�qÞ=4, which clearly satisfies Eq. (6) with q� ¼ 2
[in agreement with (9)].

Further support for our results is provided by the LDOS
distribution of a quasi-1D system in contact with a metallic
reservoir. Far away from the contact the distribution of ln�
is known to be Gaussian, with the ratio varðln�Þ=h� ln�i
equal to 2 for the WD classes, 2=3 for class C, and 1 for
class CI [34,35]. By calculating the moments h�qi, we
recover Eqs. (7) and (9) for these classes.

For the remaining five classes of Anderson localization,
as well as for critical MF systems of other origin, our
general arguments based on conformal symmetry predict
a weaker (valid at criticality only) relation (6) to hold, with
q� having the same degree of universality as critical ex-
ponents normally have (i.e., they are controlled by a par-
ticular fixed point rather than solely by the symmetry
class). Several exactly solvable problems confirm this. In
particular, the model of 2D Dirac fermions in an Abelian
random vector potential (residing in chiral class AIII) has
[36] a parabolic MF spectrum with the symmetry point
q�=2 ¼ 1=ð4gAÞ depending on the disorder strength gA.
The same applies to the non-Abelian SUðNÞ (with N�2)
generalization of this model [33] (belonging to class AIII
as well) where the symmetry point isN dependent: q�=2 ¼
N=ð2N � 2Þ. Another example is the MF spectrum of the
Ising disorder variable at the 2D Nishimori critical point,
for which q� ¼ 1 [37]. Furthermore, the MF spectra of the
harmonic measure of critical curves [38] can be obtained
by introducing (conformal) primary operators character-
ized by charges � (analogous to our q) [39]; their confor-
mal weights h� (analogs of our xq) form a parabolic

spectrum with a symmetry point �� depending on the
central charge of the model.

To summarize, conformal invariance arguments reveal
the general character of the symmetry relation (6) for
critical disordered systems with MF scaling of moments

of observables (represented by local field operators Oq).

For the Anderson localization problem in the WD, C, and
CI classes a stronger symmetry relation (7) holds, which is
based on the Weyl group symmetry of the �-model target
space. This stronger relation is not restricted to criticality,
and is characterized by a symmetry point q�=2 depending
on the symmetry class only. Future work should clarify the
impact of the Weyl group symmetry on scaling dimensions
of other composite operators and explore the role of the
U(1) and O(1) degrees of freedom in the chiral,D, andDIII
classes.
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B 78, 195107 (2008).

[27] I. A. Gruzberg, A.W.W. Ludwig, and N. Read, Phys. Rev.
Lett. 82, 4524 (1999); E. J. Beamond, J. Cardy, and J. T.
Chalker, Phys. Rev. B 65, 214301 (2002).

[28] A. D. Mirlin, F. Evers, and A. Mildenberger, J. Phys. A 36,
3255 (2003).

[29] A. R. Subramaniam, I. A. Gruzberg, and A.W.W. Ludwig,
Phys. Rev. B 78, 245105 (2008).

[30] A. R. Subramaniam et al., Phys. Rev. Lett. 96, 126802
(2006).

[31] A.M. Tsvelik, Phys. Rev. B 51, 9449 (1995); M. J.
Bhaseen et al., Nucl. Phys. B618, 465 (2001); A.W.W.
Ludwig, arXiv:cond-mat/0012189.

[32] A. P. Schnyder et al., Phys. Rev. B 78, 195125 (2008);
A. P. Schnyder, S. Ryu, and A.W.W. Ludwig, Phys. Rev.
Lett. 102, 196804 (2009).

[33] C. Mudry, C. Chamon, and X.-G. Wen, Nucl. Phys. B466,
383 (1996); J.-S. Caux, Phys. Rev. Lett. 81, 4196 (1998).

[34] C.W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[35] P.W. Brouwer et al., Phys. Rev. Lett. 85, 1064 (2000).
[36] A.W.W. Ludwig et al., Phys. Rev. B 50, 7526 (1994).
[37] F. Merz and J. T. Chalker, Phys. Rev. B 66, 054413

(2002).
[38] B. Duplantier, Phys. Rev. Lett. 84, 1363 (2000).
[39] I. Rushkin et al., J. Phys. A 40, 2165 (2007); A. Belikov,

I. A. Gruzberg, and I. Rushkin, ibid. 41, 285006 (2008).

PRL 107, 086403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

086403-5

http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1103/PhysRevLett.98.156802
http://dx.doi.org/10.1016/j.physe.2007.09.024
http://dx.doi.org/10.1016/j.physe.2007.09.024
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://arXiv.org/abs/math-ph/0404058
http://dx.doi.org/10.1006/aphy.1994.1115
http://arXiv.org/abs/1004.0732
http://dx.doi.org/10.1103/PhysRevLett.98.156802
http://dx.doi.org/10.1103/PhysRevB.75.041303
http://dx.doi.org/10.1103/PhysRevB.75.041303
http://dx.doi.org/10.1103/PhysRevB.78.115301
http://dx.doi.org/10.1103/PhysRevLett.101.116802
http://dx.doi.org/10.1103/PhysRevLett.101.116803
http://dx.doi.org/10.1103/PhysRevLett.101.116803
http://dx.doi.org/10.1103/PhysRevB.78.195107
http://dx.doi.org/10.1103/PhysRevB.78.195107
http://dx.doi.org/10.1103/PhysRevLett.82.4524
http://dx.doi.org/10.1103/PhysRevLett.82.4524
http://dx.doi.org/10.1103/PhysRevB.65.214301
http://dx.doi.org/10.1088/0305-4470/36/12/323
http://dx.doi.org/10.1088/0305-4470/36/12/323
http://dx.doi.org/10.1103/PhysRevB.78.245105
http://dx.doi.org/10.1103/PhysRevLett.96.126802
http://dx.doi.org/10.1103/PhysRevLett.96.126802
http://dx.doi.org/10.1103/PhysRevB.51.9449
http://dx.doi.org/10.1016/S0550-3213(01)00432-1
http://arXiv.org/abs/cond-mat/0012189
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1016/0550-3213(96)00128-9
http://dx.doi.org/10.1016/0550-3213(96)00128-9
http://dx.doi.org/10.1103/PhysRevLett.81.4196
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/PhysRevLett.85.1064
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.66.054413
http://dx.doi.org/10.1103/PhysRevB.66.054413
http://dx.doi.org/10.1103/PhysRevLett.84.1363
http://dx.doi.org/10.1088/1751-8113/40/9/020
http://dx.doi.org/10.1088/1751-8113/41/28/285006

