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A major challenge in realizing antiferromagnetic and superfluid phases in optical lattices is the ability

to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a

function of the chemical potential, temperature, and repulsion using unbiased determinantal quantum

Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We

show that increasing repulsion leads to cooling but only in a trap, due to the redistribution of entropy from

the center to the metallic wings. Thus, even when the average entropy per particle is larger than that

required for antiferromagnetism in the homogeneous system, the trap enables the formation of an

antiferromagnetic Mott phase.
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Introduction.—One of the most exciting themes in con-
densed matter physics is how complex states of matter
emerge from simple Hamiltonians. In particular, the repul-
sive Fermi-Hubbard model gives rise to a rich variety of
behavior, including a Mott-insulating regime, an antiferro-
magnetically ordered Néel state, and possibly a ‘‘high-
temperature’’ d-wave superfluid.

Cold atomic gases are unique in being clean and tunable
systems that offer tremendous promise for exploring such
Hamiltonians. The Fermi-Hubbard model can be emulated
by using an optical lattice with two hyperfine species of
fermions [1]. Several experimental feats have already been
accomplished: the observation of sharp Fermi surfaces for
free fermions in an optical lattice [2] and of the Mott-
insulating regime for repulsively interacting fermions
[3,4]. The next step in this quest is to go to even lower
temperatures, where the local moments order to form a
Néel antiferromagnet.

In this Letter, we present an adiabatic cooling protocol
for trapped systems, which we expect to play an important
role in the race for finding antiferromagnetism in the
repulsive Hubbard model and for opening the door toward
the search for the d-wave superfluid state. We first calcu-
late the thermodynamics of a homogeneous system by
using unbiased determinantal quantum Monte Carlo
(DQMC) as a function of filling and temperature, accessing
both paramagnetic and antiferromagnetic (AFM) phases.
At half filling, this allows us to obtain the entropy down to
T ¼ 0:1t [see Fig. 1(b)], well below the maximum Néel
temperature TN � 0:36t [5] and also well below the
temperatures accessed by recent cluster studies [6].

We next use the local density approximation to treat the
effect of a harmonic trap. We demonstrate that increasing
the repulsion U adiabatically leads to substantial cooling
but only in the presence of the trap (see Fig. 2). During this
process, the cloud expands and entropy gets redistributed

from the center to the metallic wings. Even though the
average entropy per particle S=N � 0:65kB is higher than
the critical entropy of the homogeneous system (0:4kB at
U=t ¼ 8), we see from Fig. 3 that it is possible to generate
an AFM state at the center; see also Ref. [6].
Model and methods.—We consider the Fermi-Hubbard

Hamiltonian

H ¼ �t
X

hrr0i�
ðcyr�cr0� þ cyr�cr0�Þ þU

X

r

nr"nr#

þX

r

ðVtr
2 ��Þðnr � 1Þ; (1)

in which r labels a site (or well) of a 3D cubic optical
lattice, � ¼" or # corresponds to two hyperfine states, t is
the nearest-neighbor hopping amplitude, U is the on-site
interaction energy, cr� is the fermion destruction operator

at site r with spin �, and nr� ¼ cyr�cr� with nr ¼ P
�nr�.

The curvature Vt ¼ 1
2m!2

0d
2 describes harmonic confine-

ment with trap frequency !0=2�, fermion mass m, and
lattice spacing d. The chemical potential � controls the
average density. The parameters t and U can be directly
related [7] to the lattice depth, set by the laser intensity, and
to the interatomic interaction tuned by a Feshbach reso-
nance. This Hamiltonian is valid in the regime where only
a single band is populated in the optical lattice. Following

Ref. [4], we define the characteristic trap energy Et ¼
Vtð3N=8�Þ2=3. This is equivalent to using the characteristic
density [8] ~� ¼ Nð4Vt=tÞ3=2 obtained by normalizing N

with the length scale � ¼ ð4Vt=tÞ�1=2, with Et / ~�2=3.
We calculate the density �, energy density E, double

occupancy D ¼ hnr"nr#i, and spin correlations for a homo-

geneous system (Vt ¼ 0) as a function of�, T, and U=t by
using DQMC simulations [9,10].
Half filling.—We first focus on the homogeneous case

at half filling (� ¼ 0) and U=t ¼ 8, where the Néel
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temperature TN=t ¼ 0:36 is highest [5]. At � ¼ 0 DQMC
is free of the fermion sign problem, and we can access low
temperatures down to T ¼ 0:1t, well into the AFM phase.
We perform extrapolation on EðTÞ to the limit of zero
imaginary-time discretization (�� ¼ 0) and infinite system
size (L3 ¼ 1), as described in detail in Ref. [11]. The high
statistical accuracy of the DQMC data even reveals critical
fluctuations near TN .

We obtain the ground state energy E0=t ¼ �0:74ð2Þ and
the correct low-temperature behavior (E� T4) expected
for an antiferromagnet with linearly dispersing spin waves.
The results are shown in Fig. 1(a). Integrating EðTÞ down
from infinite temperature, we determine the entropy per
site by using sðTÞ ¼ ln4þ E=T � R1

T dTE=T2. Our re-

sults agree with extrapolated results from the dynamical

cluster approximation (DCA) [6], available only in the
paramagnetic phase.
We see from Fig. 1(b) that, as the temperature is reduced

below U ¼ 8t, the entropy per site s=kB decreases from
ln(4) to ln(2), due to suppression of double occupancy
below the Mott scale for charge fluctuations. At TN the
critical entropy is sN=kB � 0:4kB, consistent with Ref. [6].
Our DQMC results show a steep drop in entropy below TN

resulting from spin ordering.
In Fig. 2(a), we show constant-entropy curves in the

ðT;UÞ plane at half filling. We also plot the Néel tempera-
ture as a function of U obtained from previous QMC
simulations [5] together with its asymptotic forms at weak
and strong coupling. The dashed curve is 0:282TMFðU=tÞ,
where the mean-field result is given by 2=U ¼P

k tanhð2�k=TMFÞ=�k and the suppression factor 0.282
arises from OððU=tÞ2Þ vertex corrections [12,13]. The
dotted curve shows the strong-coupling Heisenberg limit
result 3:78t2=U [14].
Away from half filling.—We next compute the equation

of state �ð�Þ of the homogeneous system away from half
filling, as this will be needed to study the effect of a trap.
We now obtain the entropy by integrating along an iso-
therm from the empty lattice, sð�Þ ¼ R�

�1 d�ð@s=@�ÞT ,
making use of the Maxwell relation ð@s=@�ÞT¼
ð@�=@TÞ�, where ð@�=@TÞ� is evaluated by using a finite

difference scheme. This gives results [indicated by sym-
bols labeled ‘‘

R
d�’’ in Fig. 1(b)] consistent with integra-

tion of EðTÞ as described above.
We model the trap by using the local density approxi-

mation, in which local observables are given by their
homogeneous values evaluated at a chemical potential
�ðrÞ ¼ �0 � Vtr

2. The local density approximation is
very accurate for local quantities such as entropy or num-
ber density, as has been established by QMC calculations
in the presence of a trap [15,16]. The chemical potential at
the trap center �0 is determined from the total fermion
number N ¼ R1

0 dr4�r2�ð�ðrÞÞ. We obtain density, en-

tropy, and local spin correlation profiles such as those in
Figs. 3 and 4, from which we can deduce a route to
achieving cooling in optical lattices.
Cooling.—Note the contrast between the constant-

entropy curves in the homogeneous system at half filling
[Fig. 2(a)] and in a harmonic trap with Et ¼ 3:28t
[Fig. 2(b)]. For a given entropy per particle S=N, the
temperature of the trapped system is already lower than
that of the homogeneous system at U ¼ 0. Furthermore, as
U is ramped up, the trapped system exhibits significant
cooling compared to the homogeneous system. Thus we
see that, for Et ¼ 3:28t and any starting entropy less than
0:65kB, one can obtain an AFM core by adiabatic cooling
[see Fig. 2(c)].
We gain further insight from the profiles shown in

Figs. 3(a)–3(c). As the interaction is ramped up from
U=t ¼ 0 to 8, the cloud expands and the density at the

(a)

(b)

FIG. 1 (color online). (a) Energy per site of homogeneous
system at half filling and U=t ¼ 8, calculated by using DQMC
down to T=t ¼ 0:1. Statistical error bars are smaller than sym-
bols. The solid curve is the entropy extrapolated to L ¼ 1 and
d� ¼ 0 (details in Ref. [11]). (b) Entropy per site obtained by
integrating down from T ¼ 1, showing a shoulder at the Mott
scale TMott ’ U and a distinct feature at the Néel temperature
TN � 0:36t due to critical fluctuations. Errors in E=t and s=kB
are both about 0.02. Our extrapolated results are fully consistent,
within error bars, with the DCA results from Fuchs et al. [6].
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center decreases towards 1, characteristic of a Mott insu-
lator. This Mott insulator has a gap to charge excitations
and thus a low entropy. On the other hand, the metallic
state in the wings, with its low-energy spin and charge
excitations, can act as an entropy sink. Although the central
entropy density changes nonmonotonically with U, even-
tually there is a transfer of entropy from the center to the
wings leading to a Mott core.

During this process the temperature falls from T=t ¼
0:53 to 0:36 � TN . In the final state, the entropy density
sðrÞ at the center is near the critical value for AFM ordering
indicated by the dashed line [17]. We see the growth of
local antiferromagnetic correlations from the nearest-
neighbor spin-spin correlation CnnðrÞ ¼ �hSr � Srþx̂i,
where Sr ¼ 1

2

P
	
�	
c

y
r	cr
 is the spin at site r.

Our analysis shows that the adiabatic cooling in a trap
results from entropy redistribution and not from a
Pomeranchuk effect in the homogeneous equation of state
[18,19] as discussed below. In any case, we do not find a
significant Pomeranchuk effect ð@T=@UÞS < 0 in DQMC,
either in 3D [see Fig. 2(a)] or in 2D [20,21].

Another way to cool in a trap is to use adiabatic expan-
sion, a standard cryogenic technique, the results for which
are shown in Fig. 4. We see that as Et=t decreases from
21.93 to 3.28, the core goes from a band insulator to an
antiferromagnetic Mott insulator.
In Figs. 3 and 4, the open symbols used only at the

lowest temperature (T=t ¼ 0:36t) denote regions of the
trap away from half filling where the DQMC sign problem
is significant. In this range we have used a combination of
interpolation and results from smaller systems (for which
the sign problem is less severe).
We now remark on the temperature dependence of the

double occupancy D of the homogeneous system at half
filling, shown in Fig. 5. As T decreases below the U, D is
generally suppressed due to Mott physics, so that
ð@D=@TÞU > 0. At low temperature for intermediate
U=t ¼ 4–6, D shows anomalous behavior in that
ð@D=@TÞU < 0 over a range of T close to TN . By using a
Maxwell relation, ð@D=@TÞU ¼ ð@D=@SÞUð@S=@TÞU ¼
ð@T=@UÞSC=T, so that ð@T=@UÞS < 0, suggesting the pos-
sibility of ‘‘Pomeranchuk cooling’’ [18] by adiabatically
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FIG. 3 (color online). Cooling by increasing interaction: adiabatic evolution of a cloud of N ¼ 1:3� 106 particles with increasing
interaction U for a fixed total entropy per particle S=N ¼ 0:65kB and trap compression Et=t ¼ 3:28. In going from U=t ¼ 0 to 8,
entropy is ultimately transferred from the core to the wings (or outer shell) at r > 70, with S ¼ R1

0 dr4�r2sðrÞ remaining constant. The

integrand 4�r2sðrÞ is shown in the inset.
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FIG. 2 (color online). (a) Constant-entropy curves of a homogeneous system at half filling [17]. There is no clear evidence for
‘‘Pomeranchuk’’ cooling as U is increased adiabatically, in marked contrast to (b). The filled symbols are QMC values for TN from
Ref. [5], and the dashed and dotted curves are weak- and strong-coupling asymptotic forms (see the text). (b) In a harmonic trap with
Et ¼ 3:28t, ramping up U adiabatically produces significant cooling due to entropy redistribution. An AFM state can be produced in
the trap center even for an overall entropy per particle S=N � 0:65kB. (c) Average entropy per particle in a harmonic trap below which
AFM order exists at the center. This is significantly higher than the critical entropy of a homogeneous system.
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increasing the interaction. This effect is smaller in DQMC
than predicted by dynamical mean field theory. When
corrections for finite �� are made, the DQMC and DCA
[6] data are in fact in very good agreement [22]. Thus the
‘‘Pomeranchuk effect’’ in a homogeneous system is insig-
nificant, as already shown in Fig. 2(a).

Discussion and conclusion.—In conclusion, our most
significant observation is that it is possible to lower the
temperature of the trapped system by suitable adiabatic
processes. Cooling results from entropy redistribution in a
trap with the metallic wings acting as entropy sinks.
We find that an average entropy per particle in the trap
S=N ¼ 0:65kB is sufficiently low to produce an AFM state
at the center by using our adiabatic cooling protocol [6]. In
order to go well below TN, a correspondingly lower en-
tropy is required.

The results for the trapped system are markedly different
from those for the homogeneous system. First, the maxi-
mum critical entropy of a homogeneous AFM state occur-
ring at U ¼ 8t is 0:4kB, considerably lower than the

average value required in a trap. Second, adiabatically
increasing U in the homogeneous case does not lead to
significant cooling.
We finally discuss the implications for optical lattice

experiments [3,4]. Before the lattice is turned on, the initial
temperature of a trapped gas is typically Ti � 0:1TF, where

the Fermi temperature kBTF ¼ @!0ð3NÞ1=3. For noninter-
acting fermions, an initial temperature Ti=TF � 0:06,
within the reach of current experiments, corresponds to
an average entropy per particle S=N ¼ 0:65kB in the trap.
As noted above, this leads to an AFM state at the center,
which can be probed by the growth of nearest-neighbor
spin-spin correlations. Thus, the results presented here
imply that antiferromagnetism is achievable in optical
lattices, provided that adiabaticity can be maintained dur-
ing our cooling protocol.
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