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Relaxation processes of dislocation systems are studied by two-dimensional dynamical simulations. In

order to capture generic features, three physically different scenarios were studied and power-law decays

found for various physical quantities. Our main finding is that all these are the consequence of the

underlying scaling property of the dislocation velocity distribution. Scaling is found to break down at

some cutoff time increasing with system size. The absence of intrinsic relaxation time indicates that

criticality is ubiquitous in all states studied. These features are reminiscent of glassy systems and can be

attributed to the inherent quenched disorder in the position of the slip planes.
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When crystalline materials are subjected to large enough
stresses they undergo plastic, irreversible deformation
caused by the motion of dislocations. As is well known,
these linear lattice defects interact via long-range
(1=r-type) stress fields [1] playing a crucial role in several
complex phenomena related to plasticity, such as the for-
mation of various dislocation patterns during deformation
[2] and dislocation avalanches [3]. Other systems with
long-range interactions, like gravitating particles [4] or
non-neutral plasmas [5], have been intensely studied and
found to exhibit several unique properties, like power-law
relaxation [6]. Unlike dislocations these systems are
Hamiltonian; still, one would expect similar level of
complexities.

Another characteristics of dislocation systems is the
inherent randomness in the positions of slip planes,
wherein individual dislocations glide easily. On the other
hand, systems with disorder, like structural and spin
glasses, have been the focus of much interest. They were
found to show peculiar dynamical properties [7], such as
slow relaxation, attributed to a wide spectrum of decay
times. The fact that dislocation systems contain quenched
disorder through the glide planes raises the analogy with
spin glasses. Glassy dynamical behavior has indeed been
observed in simulations [8] and experimentally [9] for
dislocation systems, but the phenomenon is still lacking a
systematic study.

The interplay of long-range interaction and disorder
leads to complex behavior even in two-dimensional dis-
location systems [10–12]. The model is a strong simplifi-
cation over reality, local processes [13] were neglected,
only justified by the richness of phenomena reported about
in this Letter. Slow relaxation was observed in several
instances, like under constant external stress, i.e., creep
condition. In this case a dislocation system with single
slip exhibits the well-known Andrade-type creep law
[14], with the plastic strain rate _�pl decreasing in time t

as _�plðtÞ � t�2=3 until a cutoff time t1 [15]. It was also

suggested that t1 tends to infinity as some critical stress is
approached from below, hinting at an analogy between the
yielding transition and conventional phase transitions
[15,16]. In addition, it was also reported that single slip
random 2D dislocation systems at zero external stress relax
to an equilibrium state slowly, with a relaxation time
increasing with system size [17]. Such slow relaxation
processes of dislocated crystals have also been observed
experimentally [14,18].
In this Letter we focus on the properties of relaxation to

equilibrium below the yield stress. In all arrangements
studied we observe power-law decay of various quantities,
a feature due to the underlying scaling of the dislocation
velocity distribution. Scaling is always found to cut off at a
characteristic time increasing with system size, indicating
that critical behavior is not limited to a given threshold
stress suggested by earlier investigations [10,15], rather,
criticality is present in all states studied.
The system considered is the simplest representation of

a dislocated crystal, consisting of parallel straight edge
dislocations with parallel slip planes. Thus the problem is
simplified to 2D. By denoting the position of the ith dis-
location by ri ¼ ðxi; yiÞ, its Burgers vector by bi ¼ siðb; 0Þ
(si ¼ �1 is the sign of the ‘‘charge’’), the equation of
motion of a dislocation can be written as [15]

_x i ¼ si

� XN
j¼1;j�i

sj�indðri � rjÞ þ �extðriÞ
�
; _yi ¼ 0:

(1)

Here �indðrÞ ¼ cosð’Þ cosð2’Þr�1 is the shear stress field
generated by an individual dislocation, �ext denotes the
external shear stress, and N is the total number of the
constituent dislocations. We note that the different physical
parameters are absorbed in the length, time, and stress
scales, as we measure them in ��0:5, ð�MGb2Þ�1, and
Gb�0:5 units, respectively, where � is the dislocation den-
sity, M is the dislocation mobility, and G is an elastic

PRL 107, 085506 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

0031-9007=11=107(8)=085506(4) 085506-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.085506


constant [17]. So, in the rest of this Letter, only these
dimensionless units are used.

Let us highlight the most important physical features
of this conceptually simple model. First, the pair interac-
tion is of long-range character, since it decays with 1=r;
moreover, it exhibits a complicated angular dependence
with zero average. Second, the equation of motion (1) is
first order, which is due to the commonly assumed over-
damped nature of dislocation motion; thus the system is
strongly dissipative, i.e., non-Hamiltonian. Third, the
motion is constrained, since dislocations can only move
parallel to the x axis. This has the important consequence
that if the initial y coordinates are chosen randomly, this
will represent a quenched disorder. As a result, the sys-
tem never completely forgets its initial state, that is, it
does not collapse into a global energy minimum, rather
it gets trapped into a local minimum. Thus, the ground
state of the system is frustrated leading to a glasslike
dynamics [8].

In the first part of this Letter the relaxation of random
dislocation systems is studied. In this scenario an equal
number of positive (si ¼ 1) and negative (si ¼ �1) sign
dislocations are placed randomly in a square-shaped area.
Then, with periodic boundary conditions, the equations of
motion (1) are solved numerically [17] until no consider-
able dislocation movement is observed (for an example
simulation movie, see [19]). It is noted that due to the
periodic boundary conditions, the stress field �ind is also
modified; for details see [20]. The simulations were re-
peated with different initial configurations 13 000, 300, and
118 times for the system sizes of N ¼ 128, 512, and 2048,
respectively. During the relaxation of the system, the time-
dependent probability distribution of the dislocation veloc-
ities Pðv; tÞ was determined numerically. (Since there is no
external stress, for symmetry reasons, the velocity distri-
butions of positive and negative dislocations are equal and
symmetric.) According to Fig. 1(a) a remarkable feature
of the velocity distribution is that it decays to zero as v�3

(for a theoretical explanation, see [21]). In addition, Pðv; tÞ
tends to a Dirac-� function (corresponding to the equilib-
rium state), and between an initial t0 and a cutoff time t1
this is described with the scaling law

Pðv; tÞ ¼ t�fðt�vÞ: (2)

The exponent � was found to be � ¼ 0:85ð2Þ and the
scaling function f can be well approximated by the form
fðxÞ � A=ðBx3 þ 1Þ. Note that the curves plotted are al-
ways results of averaging over the statistical ensemble.

In order to investigate this scaling behavior in more
detail, the mth moment hjvðtÞjmi of the absolute velocity
was also determined for different m values. According to
Eq. (2),

hjvðtÞjmi ¼
Z

jvjmPðv; tÞdv ¼ Cmt
�m�; (3)

where Cm is a constant. (Because of the asymptotic prop-
erties of the scaling function f, the integral is finite only for
�1<m< 2.) Figure 1(b) shows the measured hjvðtÞjmi
curves for different m values and system sizes. The fitted
exponents are in agreement with Eq. (3). (With the same
simulation setup the scaling regime and the value of� have
already been reported in [17].)
As seen in Fig. 1(b) the scaling region is bounded from

both sides. It starts at a fixed t0 � 0:4 and lasts till a cutoff

time t1 increasing with linear system size L ¼ ffiffiffiffi
N

p
. This is

in perfect accordance to what is usually found in systems
with long-range interactions. The actual t1 versus L rela-
tion is analyzed below.
In the second simulation scenario, an extra dislocation

with fixed position is introduced to an already relaxed
configuration [19]. This can be considered as the prototype
of an external perturbation. (The equilibrium dislocation
configuration generated by the extra dislocation, the ana-
logue of Debye screening, was analyzed in [22,23].)
Because of the extra force field, the system evolves to a
new equilibrium state. As Fig. 2 shows, Pðv; tÞ again
obeys the same scaling law given by Eq. (2), now with
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FIG. 1 (color online). Dynamics during relaxation from a
random configuration. (a) The scaled velocity distributions of
dislocations P given by Eq. (2) with � ¼ 0:85 at system size
N ¼ 2048, and the approximated fitted scaling function (see
text). (b) The moments hjvðtÞjmi for different exponents m (m
increases for the group of curves from top to bottom) and
dislocation numbers N. The solid, dashed, and dotted lines
correspond to N ¼ 128, 512, and 2048, respectively.
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� ¼ 0:34ð4Þ. Consistently, the evolution of different ve-
locity moments obey Eq. (3), and thus confirms scaling.

In the third scenario an external constant shear stress �ext
is turned on to the relaxed system [19] (creep experiment
first studied by Miguel et al. [15]). If �ext is smaller than a
certain yield stress, the induced mean plastic strain rate
_�plðtÞ decreases to zero. Figure 3(a) shows the evolution

of _�pl at different external stresses �ext and system sizes N.

As seen _�pl also has a power-law regime with exponent

slightly decreasing with increasing �ext. Like for the re-
laxation without external stress, the power decay is cut off
at some time t1, not shown in Fig. 3(a) for clarity. We again
find that t1 is increasing with system size; for more details
see [19]. It is, however, practically independent from �ext,
a conclusion different from what was drawn in [11,15].
Namely, there it was found that at a critical stress level
_�plðtÞ becomes pure power law without a cutoff time,

whereas below it a stress-dependent cutoff exists. Ac-
cording to our investigations for low stresses, the cutoff

t1 /
ffiffiffiffi
N

p
is mainly due to finite size.

We now turn to the velocity distribution of positive and
negative dislocations, denoted by Pþ and P�, respectively.
For symmetry reasons the distribution always fulfills
Pþðv; tÞ ¼ P�ð�v; tÞ, so it is enough to investigate Pþ,
denoted hereafter by P. We separate it into a symmetric
and an antisymmetric part as P ¼ Ps þ Pa (note that in the
absence of external stress Pa ¼ 0, hence Pþ ¼ P�). Then
in the definition of the velocity moments Eq. (3) P has to be
replaced by Ps, and _�pl is

_� plðtÞ ¼
�XN
i¼1

sivi

�
¼

Z
vPaðv; tÞdv: (4)

Figures 3(b) and 3(c) show the scaling of Ps and Pa,
respectively, for �ext ¼ 0:11 with

Psðv; tÞ ¼ t�fðt�vÞ and Paðv; tÞ ¼ gðt�vÞ; (5)

at � ¼ 0:32ð2Þ and � ¼ 0:32ð3Þ, numerically indistin-
guishable in this case. Note that no power prefactor was

found in the scaling form of Pa above. From Eqs. (4) and
(5) _�plðtÞ ¼ Ct�2�, with an appropriate C constant. This

is in complete agreement with the time evolution of _�pl

plotted in Fig. 3(a). For different �ext values, the same
scaling is found with slightly different exponents.
We mention that the plastic strain �plðtÞ has the exponent

1� 2�, this varies in the range 0.3–0.4, and is in accor-
dance with the well-known power 1=3 of the Andrade
creep [14,15].
To summarize the above findings, the scaling formulas

Eq. (5) seem to be generally valid. The exponents vary,
however, a feature we attribute to the difference in the
initial conditions and external stress field, the only proper-
ties distinguishing the scenarios we considered. Thus, the
exponent is not a universal, inherent characteristic of the
dislocation system determined only by the interactions and
dimensionality.
The last issue to be elucidated is the system size depen-

dence of the cutoff time t1. In order to determine t1,

10-5
10-4
10-3
10-2
10-1
100
101
102
103

10-6 10-5 10-4 10-3 10-2 10-1 100

P
/t

α

vt α

v –3

t = 1
t = 2
t = 4
t = 10
t = 20
t = 50
t = 100
t = 200

FIG. 2 (color online). Scaling of the velocity distribution after
adding an extra fixed dislocation to a relaxed system with � ¼
0:34 at N ¼ 2048. The corresponding scaling function (solid
line) is fðxÞ � A=ðBx3 þ Cx2 þ 1Þ.
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FIG. 3 (color online). Relaxation due to a constant external
shear stress �ext below the yield stress. (a) The mean plastic
strain rate _�pl versus time t curves for different �ext and system

sizes N. Curves for increasing size (from top to bottom at t ¼ 1;
red, green, and blue) correspond to N ¼ 128, 512, and 2048,
respectively. The plot centers on the power-decaying regime,
not resolving the cutoff times. (b) The symmetric part of the
velocity distribution Ps at different times scaled with Eq. (5)
with � ¼ 0:32 at N ¼ 2048 and �ext ¼ 0:11. The approximate
scaling function (solid line) is fðxÞ � A=ðBx3 þ 1Þ. (c) The
antisymmetric part of the velocity distribution Pa at different
times scaled with Eq. (5) with � ¼ 0:32 at N ¼ 2048 and
�ext ¼ 0:11. The approximate scaling function (solid line) is
gðxÞ � C=ðDx3 þ x�1Þ.
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t�hjvðtÞji is plotted with a semilogarithmic scale in Fig. 4
for the first simulation scenario. As seen, the curves ob-
tained can be well fitted by straight lines, so the time
evolution of hjvji can be described with the form hjvðtÞji ¼
Ct�� expð�t=t1Þ. Thus the cutoff time t1 is a simple re-
laxation time.

In addition, in Fig. 4 the time is rescaled with L ¼ ffiffiffiffi
N

p
and with this the curves corresponding to different system
sizes are parallel, indicating that t1 is proportional to the
system size L. Similar behavior is found for the different
order velocity moments introduced above. These results
indicate that the relaxation of hjvðtÞji can be described with
the rate equation

dhjvðtÞji
dt

¼ �
�
�

t
þ 1

t1

�
hjvðtÞji; (6)

where t1 / L. This can be interpreted as follows: at large
enough time (t � t1) during the relaxation of a dislocation
system with finite size it always gets close to its energy
minimum and enters into an exponential relaxation regime.
With increasing system size, however, the energy land-
scape becomes more and more complex, resulting in a
longer time to reach the exponential relaxation regime.
This is in agreement with the recent results of Laurson
et al. [10], who found that the dynamics slows down
dramatically as the yield stress is approached from above.
We would also like to highlight that although the time
exponent � varies with conditions of the relaxation, the
size dependence of the cutoff time t1 is in all scenarios
studied in this Letter close to linear [19].

In summary, power-law relaxation of dislocation sys-
tems was observed in different scenarios. This effect may
be attributed to the quenched random positions of the slip
axes and the complex nature of the interactions. Re-
markably, the scaling of the time-dependent velocity dis-
tribution goes with different exponents depending on the
physical setup. Scaling is cut off due to the finite size, so
the system does not possess any inherent time scale. The
dislocation system is, therefore, found to behave like a

critical one in all cases considered, strongly resembling
glassy systems.
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[13] D. Gómez-Garcı́a, B. Devincre, and L. P. Kubin, Phys.
Rev. Lett. 96, 125503 (2006).

[14] F. Nabarro, Acta Mater. 54, 263 (2006).
[15] M.-Carmen Miguel, A. Vespignani, M. Zaiser, and S.

Zapperi, Phys. Rev. Lett. 89, 165501 (2002).
[16] M. Zaiser, Adv. Phys. 55, 185 (2006).
[17] F. F. Csikor, M. Zaiser, P. D. Ispánovity, and I. Groma, J.

Stat. Mech. (2009) P03036.
[18] F. Louchet and P. Duval, Int. J. Mat. Res. 100, 1433

(2009).
[19] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.107.085506 for mov-
ies on single relaxation runs and illustration of cutoff
times.
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