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Social permutation invariant coordinates are introduced describing the bond network around a given

atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix,

are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder

transition. Once combined with ab initiometadynamics, these coordinates are shown to be a powerful tool

for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of

isomerization, association, and dissociation reactions.
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Being able to predict the structure of atomic aggregates,
from molecules to crystals, is an open (long-standing)
challenge for theoretical and computational methods
(see, e.g., [1–3]). For nanoscale clusters, this problem is
particularly important because their physical properties
strongly depend on their structure. Experiments have
severe difficulties in providing structural information [4].
Therefore, simulations become crucial in exploring the
thermodynamically relevant configurations of atomic sys-
tems at the nanoscale. Related to the ‘‘structural problem’’
of clusters is that of foreseeing the distinct heteroatomic
molecules sharing a given formula unit. Moreover, under-
standing and predicting isomerization, association, and
dissociation reactions are common and crucial issues in
the physics and chemistry of both nanoclusters and com-
plex molecules. Computer experiments stand out also in
this case as the ideal tool to gain insight. However, a
unified and reliable computational approach to the above
questions is still lacking.

Numerous computational strategies have been applied to
determine low-energy geometries of atomic clusters [2],
including simulated annealing [5], genetic algorithms [6],
random search [7], basin hopping [8], and minima hopping
[9] methods. Studies based on classical potentials have
generated large databases; however, exploration of the
potential energy surface (PES) with the above techniques
is too expensive for nonempirical methods. A first screen-
ing is generally made within either classical potential (see,
e.g., [10]) or tight-binding schemes (see, e.g., [11]), and
only later a small number of candidate structures are
selected and optimized at the density functional theory
level. In this way, whenever they are not minima of the
empirical PES, one risks missing relevant low-energy
structures. Advanced first-principles searches for isomers
of small molecules are generally made on the basis of
static calculations, by using either the ‘‘symmetry adapted
stochastic search’’ [12] or the ‘‘scaled hypersphere search
method’’ [13], which also provides interconversion

pathways. The former becomes rapidly impractical for
low-symmetry cases and an increasing number of atoms
(* 10); the latter is intrinsically restricted to an initial
harmonic approximation for the PES.
A more general, efficient, and yet accurate methodology

is needed: It should allow the exploration of a large portion
of the free-energy surface (not just of the PES) and should
not only lead to thermodynamically relevant isomers but
also simultaneously disclose the dynamics of structural
transformations and chemical reactions. In this Letter, we
face this challenge by first developing special structure
descriptors (topological coordinates) from spectral graph
theory and then combining them with ab initio molecular
dynamics and accelerated sampling such as metadynamics
(MTD) [14]. A special virtue of our coordinates is that they
are invariant under permutations of identical atoms, thus
avoiding the explosion of equivalent isomers that is typi-
cally encountered in other methods. We call them social
permutation invariant (SPRINT) coordinates. After intro-
ducing their definition and main features, we demonstrate
their potential via simulations of Lennard-Jones aggregates
and especially silicon clusters and heteroatomic molecules
having the formula unit C4H5N.
Following spectral graph theory [15], we consider a

graph (atomic cluster) and its adjacency (contact) matrix
aij where the ij are all pairs of vertices (atoms): aij ¼ 1 if i

and j are connected [there is an edge (bond) between them]
and 0 otherwise. aij is symmetric, non-negative, and also

irreducible when it represents a connected graph, i.e., if
any pair of vertices is connected through a path. In this case
the Perron-Frobenius theorem holds: The largest modulus
eigenvalue �max is real, positive, and nondegenerate, and
the corresponding eigenvector vmax

i has all nonzero com-
ponents with equal sign. We adopt the positive sign con-
vention. In particular, a few very interesting properties can
be shown: (i) �max carries global information on the net-
work: It grows with the number of bonds and lies between
the average and the maximum coordination number (CN);
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(ii) vmax
i carries information about both the short- and long-

range topology of the atomic network surrounding atom i:
For any positive integer M,

vmax
i ¼ 1

ð�maxÞM
X

j

aMij v
max
j ; (1)

where aMij is the number of walks of length M connecting

i and j. Equation (1) shows the ‘‘social character’’ of vmax
i

[16–18].
These observations lead us to combine the largest eigen-

value and corresponding eigenvector into the definition of
topological (SPRINT) coordinates:

Si ¼
ffiffiffiffi
N

p
�maxvmax;sorted

i ; i ¼ 1; 2; . . . ; N; (2)

where N is the number of atoms and the ith component
must be taken after sorting the eigenvector from its small-
est to its largest component. It is this sorting operation that
makes the set fSig invariant with respect to the N! permu-
tations of the labeling of N identical atoms (and thus also
with respect to point-group symmetries). By systematically
avoiding the permutation degeneracy, the SPRINT coordi-
nates are a major improvement over more traditional ones
(see, e.g., [19]). An additional advantage is the dimen-
sional reduction from NðN � 1Þ=2 elements of the contact
matrix to N elements only. Moreover, the constraints
imposed on the Si’s by the sorting operation, i.e., S1 �
S2 � � � � � SN , strongly reduce their accessible space.
The simple example in Fig. 1 illustrates how the SPRINT
coordinates work, namely, how they single out the topo-
logically inequivalent atoms and relate to both the CN and
the longer-range topology.

Based on the above considerations, we propose to use
the Si’s in computer simulations both for postprocessing
(or on-the-fly) classification of the explored structures and
as reaction coordinates. Here we show their power in
combination with MTD. To this purpose, it is convenient
to generalize the contact matrix aij to a smooth and

differentiable function of the interatomic distance rij, still

preserving the validity of the Perron-Frobenius theorem.
We define

aij ¼
1� ðrij=r0Þn
1� ðrij=r0Þm ; (3)

where r0, n, and m depend on the typical bond lengths in
the cluster [20]. Because of the gradual decay of the

function in Eq. (3), the associated Si’s contain information
not only on the cluster topology but also on the 3D
geometry.
Figure 2 shows how the SPRINT coordinates perform as

collective variables of MTD simulations, when exploring
the structural pattern of Lennard-Jones (LJ) clusters with
13, 38, and 55 atoms [20]. Starting from very improbable
configurations (fragments of square or cubic lattices), it
takes MTD only �100 to �1000 time units to visit the
well-known lowest-energy isomers, i.e., icosahedra for
N ¼ 13 and 55 and a face-centered truncated octahedron
for N ¼ 38 [Fig. 2(b)]. A crowd of isomers quickly
emerges from the MTD trajectory. The spread of the Si
values allows one easily to recognize highly symmetric
from low-symmetry structures [see Fig. 2(a)]; more gen-
erally, during the simulation, collapse from a wide to a
narrow range marks a disorder-order transition.
We next turn to the use of the SPRINT coordinates for

the challenging systems and processes for which they were
mainly conceived, namely, those requiring an ab initio
description. First, we tackle the problem of characterizing
the thermodynamically relevant configurations of a cluster.
We consider silicon clusters that were often taken as a test
case for density functional theory-based algorithms de-
signed to ‘‘search for the global minimum.’’ Our investi-
gation uses Car-Parrinello [21] molecular dynamics in the
local density approximation [20] and does not require
simplified interaction models at any step of the simulation.
Our specific aim is to demonstrate that the Si’s allow for a
fast and efficient exploration of a multitude of low-energy
isomers. MTD simulations were run at room temperature,
starting from fragments of a simple cubic lattice. In the
case of Si10, this method easily yielded the structure

FIG. 1. Examples of simple graphs with each vertex labeled by
the topological coordinate Si in Eq. (2).

FIG. 2 (color online). MTD of Lennard-Jones clusters at
T ¼ 0:1 (LJ units). (a) LJ13: time evolution of the SPRINT
coordinates. Some of the explored isomers are shown.
(b) Lowest-energy minima of LJ13, LJ38, and LJ55. Colors vary
from red to white to blue with decreasing values of Si and
highlight the equivalent atoms.
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(tetracapped trigonal prism) that finds consensus as the
most thermodynamically favored [5,6,22]. Increasing the
cluster size, a rich variety of low-energy structures was
observed. For example, in the case of Si16, five independent
simulations generated hundreds of different geometries
over a cumulative time of 400 ps. Out of them, a set of
80 was selected and their atomic positions were optimized:
Sixteenwere foundwithin only 45 meV=atom [23] as shown
in Fig. 3. Our result for the lowest-energy minimum agrees
with previous studies [11,24]. However, the latter identified
onlyvery few isomers: This is a commonoutcomeofab initio
calculations and risks giving a misleading view of silicon
nanoclusters. Indeed, our findings show, on the contrary, that

already at this small size (7–9 �A) an impressive diversity of
structural motifs lies within a narrow energy range, from
fused units (e.g.,B,C,D, andM) to capped (deformed) cores
like the tri- or tetracapped trigonal prism (A, E, F, G, I, and
K), from symmetric configurations to quasiamorphous. All
geometries (Fig. 3) are ‘‘inhomogeneous’’; namely, ‘‘highly
social’’ (high-connected) atoms (red) coexist with ‘‘asocial’’
(low-connected) atoms (blue) [20]. By differentiating the
atomic environment over the whole extension of the
cluster and easily identifying topologically equivalent posi-
tions, the SPRINT coordinates qualify as precise structural
fingerprints.

As a second demonstration of the power of our scheme,
we considered a heteroatomic system of given composition
and attempted a blind exploration of the possible reactions
it might undergo at a given temperature, namely, without
relying on any information about either mechanisms or
products. We chose the formula C4H5N, used a density

functional theory description with a generalized gradient
approximation functional, and applied room temperature
Car-Parrinello MTD starting from a few different mole-
cules [20]. Because of the presence of different elements,
sorting of the principal eigenvector in Eq. (2) was made
within sets of alike atoms.
In Fig. 4, we present part of two of our computer experi-

ments. One [in Fig. 4(a)] started from allyl cyanide (A).
A complex and rich reaction pathway is observed already
in the first 30 ps, with free-energy barriers of the order of the
eV. (A) dissociates into ethenimine (B) and acetylene (C)
through the simultaneous breaking of theNCCH2—CHCH2

bond and hydrogen transfer from the tail carbon to nitrogen.
Reassociation readily follows and leads to pyrrole (F) pass-
ing through two intermediates: a linear (D) and a cyclic (E)
carbene. Note that the SPRINT coordinates preserve their
validity (the Perron-Frobenius theorem continues to hold)
even when the system dissociates into two or more frag-
ments, because the long tail of the function in Eq. (3) main-
tains a weak connection in the contact matrix. The other
simulation [in Fig. 4(b)] initiated from pyrrole (F). The ring
opening leading to linear carbene (H) proceeds via isomer-
ization to 3H-pyrrole (G). The latter is driven by direct
hydrogen transfer. The F ! G ! H pathway represents
the same reaction mechanism proposed in Ref. [26] on the
basis of laborious static quantum-chemistry calculations.
Linear carbene (H) converts then to allyl isocyanide (I),
which easily transforms to allyl cyanide (A) by a 180�
rotation of the CN group.

FIG. 3 (color online). Si16: Optimized geometries and relative
energies per atom. Colors vary as in Fig. 2.

FIG. 4 (color online). C4H5N: Two independent ab initioMTD
simulations driven by the SPRINT coordinates, starting from
(a) allyl cyanide and (b) pyrrole.
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Evolution over an additional 200 ps revealed many other
chemical species, both C4H5N isomers (e.g., methacrylo-
nitrile, cyanocyclopropane, and isocyanocyclopropane)
and dissociation products (e.g., methylacetylene, cyano-
methane and isocyanomethane, acrylonitrile, propadiene,
cyclopropene, allyl radical, ethene, methane, hydrogen
cyanide, and molecular hydrogen). This scenario is in
agreement with experimental evidence of the abundance
of products of C4H5N thermal pyrolysis [27].

A few comments can be added on possible extensions
of the scheme here proposed: (a) In pathological cases,
e.g., for structures having all atoms with identical CN, one
could include other eigenvectors of the contact matrix
beside the one corresponding to the maximum eigenvalue
[28]. (b) The use of the SPRINT coordinates is by no
means restricted to MTD. They can be analogously com-
bined with the Monte Carlo method and also with any other
accelerated sampling or global optimization procedure.
Note that we implemented these collective variables in
the freely available plug-in PLUMED [29].

In conclusion, we remark that spectral graph theory is at
the heart of many important and diverse applications: just
to name some, the tremendously successful page-rank
algorithm of Google [17], the centrality concept in social
networks [16], and the compact description of protein
structures [18]. By introducing the SPRINT topological
descriptors and proving their validity and unique advan-
tages as reaction coordinates, our work pioneers the
application of spectral graph theory to the broad area of
dynamic atomistic simulations and, in particular, to
ab initio approaches. Here we have focused on isolated
molecules and nanoclusters. However, it is straightforward
to extend this scheme to condensed phases; applications
are currently ongoing to phase transitions in solids and
chemical reactions in solution.

The authors are indebted to Alessandro Laio for insight-
ful discussions and Alessandro De Vita for a critical
reading of the manuscript.
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