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We present an improved phase estimation scheme employing entangled coherent states and demonstrate

that these states give the smallest variance in the phase parameter in comparison to NOON, ‘‘bat,’’ and

‘‘optimal’’ states under perfect and lossy conditions. As these advantages emerge for very modest particle

numbers, the optical version of entangled coherent state metrology is achievable with current technology.
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As full quantum computing based on very large quantum
resources remains on the technological horizon for now,
there is significant current interest in quantum technologies
that offer genuine quantum advantage with much more
modest quantum resources. Quantum metrology is one
field where such technologies could emerge. Nonclassical
states of light can offer enhanced imaging or spatial reso-
lution, nonclassical states of mechanical systems could
offer enhanced displacement resolution, nonclassical states
of spins could enable enhanced field resolution, and
entangled atoms could provide the ultimate accuracy for
clocks. Since it became known that optical quantum states
can beat the classical diffraction or shot-noise limit [1], in
recent years quantum metrology has been widely inves-
tigated in partnership with the rapidly developing field of
quantum information [2]. For example, the precision
limits of quantum phase measurements are given by the
Cramer-Rao lower limit bounded by quantum Fisher
information [3]. In the ideal quantum information version
of metrology, a maximally entangled state is viewed as
the best resource for quantum metrology; i.e., the optimal
phase uncertainty of the NOON state reaches to the
Heisenberg limit and it is thus considered for many appli-
cations (e.g., Bell’s inequality tests, quantum commu-
nication, and quantum computing) [4]. However, current
quantum technologies have a long way to go to the
manipulation of many-qubit entanglement for these appli-
cations, and of course all realistic quantum technologies
will be subject to loss and decoherence. Therefore, quan-
tum metrology utilizing very modest entangled resources
and with robustness against loss could be accessible for
these applications in the near future [5], revealing a fun-
damental difference between classical and quantum phys-
ics in both theory and practice.

A major research question in quantum metrology is how
to implement NOON states with large particle numbers
(called high NOON states). Many successful demonstra-
tions have shown the potential for quantum-enhanced
metrology using small NOON states [6–8]. However, it
remains a challenge to obtain a practical high NOON state
in linear (or even nonlinear) optics. Even if high NOON

states become achievable, a critical consideration is that
these states are extremely fragile to particle loss because
the resultant mixed state loses phase information rapidly.
Thus other quantum states have been studied for improved
robustness against particle loss [9,10]. Further recent
developments have shown the potential advantages of non-
linearities [11] and the importance of the query complexity
for quantum metrology [12], concluding that the same
phase operation is required for the appropriate resource
count in different states.
In this Letter, we report that a superposition of macro-

scopic coherent states shows a noticeable improved sensi-
tivity for phase estimation when compared to that for
NOON states, in the region of very modest photon or
particle numbers. Taking into account the same average
particle number, an entangled coherent state (ECS) outper-
forms the phase enhancement achieved by NOON states
both in the lossless, weak, moderate and high loss regimes.
This advantage is also maintained over other well-known
quantum states used in metrology such as bat [10], and
uncorrelated states. So even though simple coherent states
j�i are known as the most ‘‘classical-like’’ quantum states
[13], superpositions thereof are very useful and robust for
quantum metrology [14]. This phenomenon can be under-
stood as follows. For pure states, the ECS can be under-
stood as a superposition of NOON states with different
photon numbers; thus, the larger photon-number NOON
states make a contribution to a better sensitivity than
the average photon-number NOON state in the ECS. For
mixed states, the resultant state given by photon loss does
not depend on the number of particles lost but its loss
rate—thus, this state still contains some phase information
even in the large loss rate. In order to demonstrate this
perhaps surprising phenomenon, we suggest an implemen-
tation scheme using both photon-number and parity mea-
surements for modest ECSs which should be feasible with
current optical technology (see Fig. 1) [15].
We choose to compare the phase uncertainty of various

quantum states with and without loss, using the widely
accepted approach of quantum Fisher information [3].
The interferometric setup generally consists of four steps.
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The first is the preparation step where the input state
jc in

Ki12 is prepared in modes 1 and 2. Then, a unitary
operation U in mode 2 is applied, given by

Uð�; kÞ ¼ ei�ðay
2
a2Þk (1)

for phase �, order parameter of nonlinearity k, and crea-

tion operator ayi in mode i. In this Letter we assume k ¼ 1,
implying that the operationUð�; 1Þ is a conventional phase
shifter Uð�Þ (although future studies will extend this to
other k values). The outcome state is called jc out

K i12 ¼
½1 �Uð�Þ�jc in

Ki12. For the case of particle loss, we add
two variable beam splitters (BSs) with loss modes 3 and 4
located after the phase operation. After the BSs, the mixed
state �K

12 (given by tracing out the loss modes 3 and 4) is
finally measured for the estimation of phase uncertainty. A
change of transmission rate T in the BSs characterizes the
robustness of phase estimation for the input state against
the loss. The phase optimization given by the quantum
Cramér-Rao bound [3] for the outcome states jc out

K i is
described by

��K � 1
ffiffiffiffiffiffiffiffiffiffiffi
�FQ

K

q ; (2)

where � ¼ 1 for a single-shot experiment [12]. For a pure
state, quantum Fisher information is given by

FQ
K ¼ 4½hc 0

Kjc 0
Ki � jhc 0

Kjc out
K ij2� (3)

for jc 0
Ki ¼ @jc out

K i=@� [10,16]. If the outcome state is
the mixed state �K

12, the quantum Fisher information is
given by

FQ
K ¼ X

i;j

2

�i þ �j

jh�ijð@�K
12ð�Þ=@�Þj�jij2; (4)

where �i (j�ii) are the eigenvalues (eigenvectors) of �K
12.

Here we focus on three important input states as jc in
Ki

(K ¼ N;B; C) corresponding to NOON jc in
Ni, bat jc in

B i
[10,17], and ECS [18] given by

jc in
C�
i12 ¼ e�ðj�j2Þ=2N �

X1

n¼0

�n

n!
½ðay1 Þn þ ðay2 Þn�j0i1j0i2

¼ N �½j�i1j0i2 þ j0i1j�i2�; (5)

where j0ii and j�ii are, respectively, Fock vacuum
and coherent states in spatial mode i and [N � ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ e�j�j2Þ

q
] [13]. Note that jc in

C�
i can be understood

as a superposition of NOON states [18] (a related expla-
nation is given in [7]) and the phase operation is imprinted
in the outcome state

jc out
C�
i12 ¼ N �½j�i1j0i2 þ j0i1j�ei�i2�: (6)

Considering first the situation with no loss, the optimal
phase estimation of the pure states is analytically soluble.
For the NOON and bat states, it is equal to ��N � 1=N and

��B � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN=2þ 1Þp

, respectively, and for the ECS

��C � 1

2�N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½1� ðN �Þ2��2

p : (7)

Taking into account equivalent resource counts for the
states [19], we consider the same average photon number
for mode 1 given by

hnKi ¼ hc in
K jay1a1jc in

Ki ¼
N

2
¼ N 2

� � j�j2: (8)

Then, the phase uncertainty for the ECS can be compared
with respect to N for the NOON and bat states as shown in
Fig. 2. When N becomes large, ��C � ��N , which
indicates that the ECS becomes approximately equivalent
to the NOON state, being dominated by the NOON ampli-
tude at N ¼ j�j2. However, interestingly, ��N is signifi-

FIG. 1 (color online). Schematic illustration of an interfero-
metric setup for the pure ECS. Two input states (jCSS�i and j�i)
are applied to the first BS and become the ECS. After a phase
shifter Uð�Þ in a mode, the parity measurement is performed at
the measurement stage.

FIG. 2 (color online). The optimal phase estimations for
NOON, bat, and ECSs with no particle loss are depicted in
black solid, blue dashed, and red dotted lines (hni ¼ N=2 ¼
N 2

� � j�j2). Curves for NOON and bat states are shown as
continuous for comparison, but are clearly only defined at the
appropriate integers N according to Eq. (8). For small N, ��N is
significantly bigger than ��C while ��N � ��C for large N.
The crossover between �N and �B at N ¼ 2 indicates that the
NOON and bat states are identical. The green solid and red long
dashed lines show the phase estimation of the state given by
Eq. (6) in Ref. [20] and ��PM above Eq. (10), respectively.
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cantly bigger than ��C for small N because jc in
C i contains

a superposition of NOON states including N values
exceeding j�j2. Furthermore, for small �, the two terms
in Eq. (5) are not orthogonal (and only tend to being so in
the large � limit). The importance of nonorthogonality in a
superposed single-mode state has been investigated as a
quantum ruler [14]. These superposition properties enable
an advantage for the coherent states at small j�j2. For a
more detailed example, taking N ¼ 4 for the NOON and
bat states hnN4

i ¼ hnB4
i ¼ 2 and � ¼ 2:0 for the ECS

(which gives a slightly lower resource count hnC2
i ¼

1:964), the values of the optimal phase estimation are equal
to ��N4

¼ 0:25, ��B4
� 0:289, and ��C2

� 0:205. This

indicates that even with a slight resource disadvantage
hnC2

i< hnN4
i ¼ hnB4

i there is still a phase estimation

advantage ��C2
< ��N4

< ��B4
(see Fig. 2 at around

N ¼ 4). This is all very well in the zero loss regime;
however, the more important question is on the robustness
of the phase sensitivity enhancement in the realistic sce-
nario of particle loss (for instance ��B < ��N for large
loss [10] indicating bat states are more sensitive in this
regime). In order to obtain quantum Fisher information for
a mixed state due to particle loss, calculation of eigenvalues
and eigenvectors is required. From previous work [10], the
optimal phase estimations for �N

12 (NOON) and �B
12 (bat)

are already known when loss is included. Thus, we only
need to focus on obtaining the phase estimation of the
ECS jc out

C�
i. We can model such loss by two beam splitters

with the same transmission coefficient T. The total state
can be written by j�C�

i1234 ¼ BST1;3BS
T
2;4jc out

C�
i12j0i3j0i4.

Tracing out modes 3 and 4 we obtain the mixed state

�C�

12 ¼ P1
n;m¼0 Pnm�nm, where Pnm ¼1234h�C�

jnmi34 �
hnmj�C�

i1234 is the probability of detecting particles n in

mode 3 and m in mode 4 (�nm is the resultant density
operator with Pnm). Because the case of particle loss in

mode 3 (4) projects into state jSLi1 ¼ j� ffiffiffiffi
T

p i1 (jSRi2 ¼
j� ffiffiffiffi

T
p

ei�i2), the density operator can be written simply
by �L ¼ �n0 ¼ jSLi1hSLj � j0i2h0j (�R ¼ �0m ¼ j0i1 �
h0j � jSRi2hSRj). Thus, the mixed state can be written in
only two components given by

�C�

12 ¼ P00�00 þ PD�D; (9)

where the density operator for no particle loss is equal to
�00 ¼ jS00i12hS00j [jS00i ¼ N �

ffiffiffi
T

p ðjSLi1j0i2 þ j0i1jSRi2Þ]
and the non-normalized mixed state is �D ¼ �L þ �R.
Note that the resultant state is a mixture of the ECS with

�
ffiffiffiffi
T

p
(for no loss) and the other mixed state �D (for particle

losses). The probability of no particle detection is P00 ¼
ðej�j2T þ 1Þ=ðej�j2 þ 1Þ and that of particle detections is

PD ¼ P1
n¼1 P0n ¼ ðN �Þ2ð1� ej�2jðT�1ÞÞ.

To calculate quantum Fisher information for our state

�C�

12 , we choose � ¼ 2:0 providing us the interesting re-
gime for pure states and truncate the Fock basis at n ¼ 15
(corresponding to a maximum error of approximately

10�5). The mixed state in Eq. (9) is then approximately

equal to ~�C2

12 ¼ P00 ~�00 þ ðP15
n¼1 P0nÞ~�D. Using eigenval-

ues and eigenvectors of the truncated density matrix ~�C2

12 ,

we obtain the optimal phase estimation of ~�C2

12 which we
depict in Fig. 3. The optimal phase estimation of the
entangled coherent state clearly improves on that of
NOON, bat, and uncorrelated states under conditions of
loss, for essentially the whole range of T. For T � 1, the
value of the entangled coherent state follows that of the

NOON state because j~S00i12 is the dominant factor of ~�C2

12

with large probability (see the inset in Fig. 3). However, it
merges to that of the uncorrelated state at T � 1 because

~�D makes a major contribution in ~�C2

12 and is slightly better

than the uncorrelated state, 1
4 ðj1i1j0i2 þ ei�j0i1j1i2Þ�4,

due to phase coherence in the projected state given by
the particle detection (see the state �D). For large N,
��C approaches ��N due to jc in

C i � jc in
Ni. We further

remark on comparison with so-called ‘‘optimal states’’
[16]. Because of the concavity of Fisher information, the
engineering of optimal input states for a known lossy rate
has been considered [16]. These states effectively provide a
smooth interpolation between NOON at high T and un-
correlated at low T, and so ECSs also offer advantage over
these states.
Having demonstrated that moderate-size ECSs offer

advantage with phase estimation, we also need to consider
how such states could be implemented in order to realize
this advantage. In principle this is achievable with current
technology. There are basically four stages. (1) Generation
of coherent state superpositions (CSS) jCSS�i ¼ N�ðj�iþ
j � �iÞ for N� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ e�2j�j2Þ

q
. (2) Application of

BS1=21;2 to a coherent state j�i1 and the CSS jCSS�i2, with
a resultant state jc in

C�0
i ¼ N �0 ðj�0i1j0i2 þ j0i1j�0i2Þ

where �0 ¼ ffiffiffi
2

p
�. Thus, the state jCSS ffiffi

2
p i is required for

the input state jc in
C2
i. According to experimental reports
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FIG. 3 (color online). The graphs show the phase uncertainty
with respect to particle loss (T, transmission rate of the BSs) for
four states (N ¼ 4 and � ¼ 2). The legend of Fig. 2 is used here
while the dash-dotted green line indicates uncorrelated states
[10]. As shown in the magnified inset, the ECS curve starts from
�C2

� 0:205 at T ¼ 1 and follows the NOON curve at T � 1.
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[15], jCSS�i with � � 1:5 are already feasible in optics.
(3) Application of a typical phase shifter on mode 2, with
resultant state jc out

C�0
i. (4) Final measurement of the vari-

ance of the particle number in mode 2. This measurement
scheme has already been demonstrated for mixed states
with the help of the concavity of quantum Fisher informa-
tion [16]. Alternatively, a final parity measurement [21]
may be applicable, such as ð��PMÞ2 ¼ ð1� h�2i2Þ=
ð@h�2i=@�Þ2 given by the expectation value

h�2i ¼ 2þ e�j�j2 cos�ðe�ij�j2 sin� þ eij�j2 sin�Þ
2þ 2ej�j2

(10)

for �2 ¼ ei�b
y
2
b2 . As shown in the red long-dashed line in

Fig. 2, although the parity measurement on the pure ECS
does not saturate the optimal phase estimation given by the
quantum Fisher information for this state, it still beats
the phase enhancement provided by the NOON state.
However, for mixed states, the parity measurement advan-
tage (over the optimal positive operator valued measure
saturating the phase enhancement given by quantum Fisher
information for NOON and bat) holds only in a narrow
window (0:995 	 T 	 1) at T � 1, as the parity result
diverges rapidly from the optimal ECS result with loss.

In summary, we have evaluated analytically and numeri-
cally the phase uncertainty of the ECS and shown that this
state can outperform the phase enhancement limit given by
NOON and other states possessing the same mean particle
number, for the realistic scenarios of small particle number
and loss. Clearly other superpositions of NOON states
could be considered [18,22], but the ECS superposition
is of specific interest due to its practical realizability.
In current optical technology, it is already feasible to obtain
a traveling CSS which is a key ingredient for the ECS.
The photon-number [16] and parity measurement [21]
approaches are likely to demonstrate an advantage over
NOON and related states with current technology. Recent
studies have investigated mixing squeezed and coherent
states and nonlinearity of the phase operation [11,22].
Therefore, study of the effects of squeezing variables in
the CSS and investigation of nonlinear effects in the phase
operation form very interesting future research avenues,
including imperfection studies [23].
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