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We present a reliable nonperturbative calculation of the QCD correction, at leading order in the

electromagnetic coupling, to the anomalous magnetic moment of the electron, muon, and tau leptons

using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes, and a broad range of

quark masses to control the continuum, infinite-volume, and chiral limits. We examine the impact of the

commonly ignored disconnected diagrams and introduce a modification to the previously used method

that results in a well-controlled lattice calculation. We obtain 1:513ð43Þ � 10�12, 5:72ð16Þ � 10�8, and

2:650ð54Þ � 10�6 for the leading-order two-flavor QCD correction to the anomalous magnetic moment of

the electron, muon, and tau, respectively, each accurate to better than 3%.
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Introduction.—The experimental [1] and theoretical [2]
determinations of the anomalous magnetic moment of the
muon a� have both reached an accuracy that is better

than six parts per million. This high precision reveals a
discrepancy of over 3 standard deviations (3�), which
raises the possibility of physics beyond the standard model.
However, the dominant error in the theory computation is
due to hadronic effects that are currently not calculated but
are instead either separately measured or simply modeled.
This obscures the significance of the 3� effect and makes it
difficult to improve the accuracy of the standard model
calculation.

In this Letter, we present a reliable lattice QCD determi-
nation of the leading-order hadronic correction for themuon,

ahvp� , which is the single largest source of error in the theory
calculation of a�. Additionally, we calculate the leading-

order corrections ahvpe for the electron and ahvp� for the tau,
achieving an accuracy of better than 3% for each. This was
accomplished by introducing a modification of the existing
method that results in a significantly more well-controlled
calculation. After examining all sources of systematic error
and performing our own extraction of the two-flavor contri-
bution to the experimental measurements, we find agree-
ment for all three charged leptons in the standard model.

Our current computation is performed in two-flavor
QCD, but the technique presented in this work is readily
generalized to a realistic four-flavor calculation that is
already under way [3]. The precision of our calculation
and the prospects for improving it demonstrate that lattice
QCD can realistically provide a first-principles determina-
tion of the leading-order hadronic contributions to the
magnetic moments of the standard model leptons.

Leading-order hadronic correction.—The anomalous
magnetic moment al of a lepton l can be written as a

perturbative expansion in the electromagnetic coupling
�. Contributions from QCD first occur at the order �2

and can be written as [4]

a
hvp
l ¼ �2

Z 1

0
dQ2 1

Q2
wðQ2=m2

l Þ�RðQ2Þ; (1)

where ml is the mass of the lepton, Q is the Euclidean
momentum, and wðQ2=m2

l Þ is a known function. The com-

bination �RðQ2Þ ¼ �ðQ2Þ ��ð0Þ is the renormalized
hadronic vacuum polarization function �ðQ2Þ, which is
defined shortly. The weight functionwðQ2=m2

l Þ vanishes asðQ2Þ�2 for large Q2. This ensures that the integral above is

dominated by the low Q2 region, making it clear that a
hvp
l

must be evaluated nonperturbatively.
Experimental determination.—The electron and muon

magnetic moments have been measured in dedicated ex-
periments [1,5]. To compare to the standard model predic-
tion, the leading-order hadronic correction is determined
by using unitarity and causality to relate the expression in
Eq. (1) to

a
hvp
l ¼ �2

Z 1

0
ds

1

s
w0ðs=m2

l ÞRðsÞ: (2)

Here w0 is another known weight function and RðsÞ is the
ratio of the hadronic cross section �ðeþe� ! hadronsÞ to
the leptonic cross section �ðeþe� ! �þ��Þ. The deter-
mination of RðsÞ relies on the results of many experiments,
and the integral in Eq. (2) has been evaluated by several
groups, most recently [2,6–8]. Additionally, there are
higher-order corrections, including the so-called light-by-
light contribution, which is difficult to measure and is
modeled instead.
Our calculation is performed in QCD with only up

and down quarks, so we need to extract the two-flavor
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contribution to a
hvp
l . Inevitably, this introduces some am-

biguity. For the purposes of comparing to our current
two-flavor calculation, we adopt the simple procedure of
rescaling the contribution to the integral in Eq. (2) from the
energy regions between quark thresholds by the value ofP

fQ
2
f, where the sum runs over only the active quark

flavors for that region and the electric charges of the quarks
are eQf. This neglects the very small changes due to the

running of the QCD coupling, it ignores small off-diagonal
contributions proportional to QfQf0 , and it disregards any

complications at the flavor thresholds. These are all caveats
that we must accept in the current comparisons but that will
be eliminated in our ongoing four-flavor computation.

Using the results from [9,10], we extract the two-flavor

contributions to a
hvp
l along the lines just described,

giving a
hvp;ex
e;Nf¼2 ¼ 1:547ð36Þ � 10�12, a

hvp;ex
�;Nf¼2¼

5:660ð47Þ�10�8, and a
hvp;ex
�;Nf¼2 ¼ 2:638ð88Þ � 10�6. The

errors result from propagating just those of [9,10]. The
systematic error due to extracting the two-flavor contribu-
tion is likely larger than these uncertainties and must be
taken into consideration when comparing our calculation
to these estimates.

Lattice QCD calculation.—The leading-order hadronic

correction, ahvpl , is the order �2 contribution in a perturba-

tive QED expansion of al but it must be treated nonper-
turbatively in QCD. To this order in the QED coupling,
the QCD corrections only modify the photon propagator.
These contributions can be formally summed to all orders
giving the hadronic vacuum polarization tensor,

���ðQÞ ¼
Z

d4XeiQ�Xh�jTJ�ðXÞJ�ð0Þj�i:

The current J� ¼ P
fQf �qf��qf is the hadronic compo-

nent of the electromagnetic current and the sum runs over
all relevant quark flavors. The current J� is conserved,

consequently this correlation function satisfies a Ward
identity that allows us to write ��� in terms of a single

scalar function of Q2 as

���ðQÞ ¼ ðQ�Q� �Q2���Þ�ðQ2Þ:

Note that both ��� and � are calculated directly in

Euclidean space without any analytic continuation.
We use standard lattice QCD techniques to calculate the

vacuum-to-vacuum matrix element h�jTJ�ðxÞJ�ðyÞj�i.
The functional integral that is implicit in this correlation
function is evaluated stochastically using the results of the
European Twisted Mass Collaboration [11]. We have used
two lattice spacings, a ¼ 0:079 and a ¼ 0:063 fm, to ex-
amine lattice cutoff corrections. Two finite-volume studies
were performed to check for finite-size effects. The up and
down quark masses mq are equal and are parametrized in

terms of the pseudoscalar meson massmPS, withmq / m2
PS

in the chiral limit. As is common, we use heavier-than-
physical quark masses and then take the limit as mPS

approaches the physical pion mass m�. This was done by
studying the dependence onmPS over the range from 650 to
290 MeV. The so-called disconnected diagrams, ignored in
all previous calculations, were included for almost half
of the ensembles used in this work and are accounted
for as a systematic error along with those from the con-
tinuum, infinite-volume, and physical quark-mass limits.
The additional details are standard and deferred to a later
publication.
Apart from variations in how the lattice calculation of

�ðQ2Þ is matched to a smooth function, the method used
so far in all calculations [4,12–14] proceeds by numerically

integrating Eq. (1) directly to form a
hvp
l . In our calculation,

we parametrize �ðQ2Þ over the entire range of Q2 that is
determined from our lattice computation. The presence of
the lattice cutoff and the restriction to finite volume induce
an ultraviolet cutoff Q2

uv proportional to 1=a2 and an
infrared cutoff proportional to 1=L2. Extrapolating the
functional form for�ðQ2Þ toQ2 ¼ 0 [15], we numerically
evaluate the integral from Q2 ¼ 0 to Q2 ¼ Q2

uv. This is
done without any use of perturbation theory, giving a

completely nonperturbative evaluation of a
hvp
l . The sys-

tematic error caused by extrapolating to Q2 ¼ 0 is elimi-
nated as L is taken large and the error due to truncating
the integral at Q2

uv is removed as a goes to zero. Thus both
effects are automatically accounted for as part of the
corresponding systematic errors.
Our results for the muon using this method, which we

deem the standard method, are shown as the lowest set of
points in Fig. 1. Consistent with all other lattice calcula-

tions of ahvp� , we find that the values calculated at mPS

heavier than m� are significantly lower than the experi-
mentally measured value and apparently rise rapidly only
when mPS approaches quite near the physical value m�.
We attribute this behavior to the contributions of the

lowest-lying vector mesons. The rho, omega, and phi me-

sons account for over 80% of the fully measured ahvp� [9].

Any description of the vector-meson contribution to a
hvp
l

will depend on the massmV and a variety of dimensionless
couplings. Without loss of generality, we focus on just those
models based on mV and the electromagnetic coupling gV
with h�jJ�jV; 	i ¼ m2

VgV	�=
ffiffiffi
2

p
. The coupling shows

up quadratically and dimensional analysis then results

in a vector-meson contribution of a
hvp
l;V ¼ g2Vfðm2

l =m
2
VÞ.

Additionally, fðm2
l =m

2
VÞ should vanish for ml ! 0 and

mV ! 1. Thus on rather general grounds we expect ahvpl;V �
Cg2Vm

2
l =m

2
V with a model-dependent constant C.

These expectations can be combined with our lattice
calculation of mV and gV . As shown in Fig. 2, we find
that mV decreases moderately with decreasing mPS but the
values from our calculation are still rather high compared
to the experimental result m
. Thus at some point a rapid
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decrease in mV must occur. In contrast, gV , not shown but
well fit by gV ¼ 0:29ð1Þ � 0:09ð2Þm2

PS, has a mild depen-

dence on mPS and extrapolates smoothly to the experimen-
tal value g
. When combined with the model expectation

a
hvp
�;V / g2V=m

2
V , the behavior of a

hvp
� in Fig. 1 becomes

plausible. The values of a
hvp
� are lower than the experimen-

tal value and vary moderately for the region ofmPS covered
in our calculation. Only at lighter values of mPS do we

expect a sharp increase in ahvp� .
We can make these observations more precise, at the

expense of introducing model dependence, by considering

the tree-level form for the vector-meson contribution a
hvp
l;V

as given from effective field theory [13]. This gives a
specific result for fðm2

l =m
2
VÞ that we combine with our

calculation of mV and gV to construct a model-dependent

extrapolation of the results for ahvp� . Additionally, con-
straining mV to approach m
 as shown in Fig. 2 gives the

lowest-lying curve in Fig. 1. The apparent agreement with

the physical value for ahvp� increases the plausibility that
our explanation is correct. However, this construction does
not provide a reliable means of extrapolating our results to
the physical m� but instead serves to illustrate the appar-
ently strong mPS dependence in the standard method.

The difficulties encountered in the standard method
can be traced to the occurrence of two distinct scales, ml

and mV . Apart from any model, this is relevant because

ahvpl is made dimensionless at the expense of introducing

an external scale ml that is completely unrelated to the
scales of QCD. Based on this observation, we define the
following class of observables:

ahvp�l
¼�2

Z 1

0
dQ2 1

Q2
wððQ2=m2

l ÞðH2
phys=H

2ÞÞ�RðQ2Þ; (3)

where H is any hadronic quantity, understood to be a
function ofmPS, andHphys is its physical value. The natural

choice for our calculation is H ¼ mV , but any choice
produces a new modified quantity that has the same physi-

cal limit as ahvpl . This follows simply by construction

because HðmPS ! m�Þ ¼ Hphys. The standard method

can be formally reproduced by the choice H ¼ 1, but
choosing a dimensionful scale has the additional advantage
that the explicit dependence on the lattice spacing is elim-
inated. At the same time, the renormalization condition
that defines the physical limit is now given by the dimen-
sionless ratio ml=Hphys rather than ml alone.

The calculation of a
hvp
�� using H ¼ mV and H ¼ fV , the

vector-meson decay constant given by fV ¼ mVgV , are
shown in Fig. 1. All three extrapolations agree with each
other and with the estimated two-flavor contribution to the

experimental measurement of a
hvp
� . The results for the new

method show a significantly milder dependence on mPS.
This can be understood using the model considerations
earlier. Specifically forH ¼ mV , we expect a vector-meson
contribution of a�l;V � Cg2Vm

2
l =m

2

, in which only the mild

mPS dependence of gV now enters. The demonstration that
H ¼ fV results in similar improvements illustrates that any
quantity sensitive to mV will likely yield a well-controlled

observable ahvp�l
.

Without regard to any particular model or the experi-
mental measurements, we can examine the relative merits
of the standard and modified methods. Using the muon as
an example, the shift between linear and quadratic extrap-

olations for a
hvp
�� (using H ¼ mV) is 1.7%, which is only a

0:6� effect. The same results for a
hvp
� are 17% and 3:5�,

indicating the presence of noticeably more curvature in the
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FIG. 2 (color online). Phenomenological model for mV . A
model function is used to parametrize both our lattice calculation
of mV and the PDG value of the physical m
. This model is only

used to illustrate the difficulties in the standard method.
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FIG. 1 (color online). Comparison of methods for a
hvp
� . The

upper set of points are the results for a
hvp
�� using H ¼ mV , the

middle set use H ¼ fV , and the lower set correspond to
the standard method, formally H ¼ 1. The two lines are linear

extrapolations of a
hvp
�� and the curve is the phenomenological

extrapolation of a
hvp
� . The three methods agree at the physical

point, denoted by the dashed line, and agree with the estimated
two-flavor contribution to the experimental value.
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standard approach. In this case, cubic fits are required and
give an extrapolated value of 4:1ð1:5Þ � 10�8, which
agrees with the more precise value of 5:72ð16Þ � 10�8

that results from extrapolating a
hvp
�� . The same pattern holds

for the electron and tau; thus, the lattice calculation itself
provides direct evidence that our modified method has a
smoother approach to the physical limit leading to a more
accurate calculation.

Taking the modified method with H ¼ mV as our defi-

nition of ahvp�l
, we calculate all three l ¼ e,�, and �. These

results are shown in Fig. 3, and the extrapolated values at
the physical point are

a
hvp
e;Nf¼2 ¼ 1:513ð43Þ � 10�12;

a
hvp
�;Nf¼2 ¼ 5:72ð16Þ � 10�8;

ahvp�;Nf¼2 ¼ 2:650ð54Þ � 10�6:

The quoted errors are due to the stochastic integration only.
We do not find any statistically meaningful uncertainties
due to lattice artifacts, finite-size effects, the extrapolation
in mPS or the exclusion of the disconnected diagrams. At
some higher precision these effects will be relevant, but
there is no sign that they are significant at the few percent
level of our current calculation.

Conclusions and outlook.—We have performed the first
lattice QCD calculation of the leading-order QCD correc-

tion to the anomalous magnetic moments ahvpl that in-

cluded dynamical quarks, examined lattice artifacts,
checked finite-size effects and studied the disconnected

diagrams. We examined the pitfalls of the standard method

for calculating a
hvp
l and introduced a modification that

creates a dimensionless quantity a
hvp
�l

composed of had-

ronic scales only. This quantity has the same physical limit

as a
hvp
l but has a mild approach to that limit that is now well

controlled. This allowed us to calculate the leading-order
correction for all three charged leptons with an accuracy
better than 3%, reproducing our estimate of the two-flavor
contributions to the experimental measurements.
The calculation was done using two-flavor QCD, which

is the most significant systematic error. To resolve this, we
are currently starting a four-flavor calculation. This will
eliminate any ambiguity regarding the extraction of the
two-flavor experimental value. When combined with fur-
ther anticipated improvements, the modified method pre-
sented here should produce a result precise enough to

replace the experimentally estimated a
hvp
l with a complete

first-principles QCD calculation and eliminate this source
of ambiguity in the current 3� discrepancy in a�.
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FIG. 3 (color online). Calculation of a
hvp
�l

for all three l ¼ e,�,
and �. The meaning of the symbols is the same as in Fig. 1. We
show the results from our improved method using H ¼ mV . The
results are extrapolated linearly (solid line with error band) and
quadratically (dashed line) to the physical point and agree with
the two-flavor contribution extracted from the experimental
measurements.
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