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We present a new formulation of one of the major radiative corrections to the weak charge of the

proton—that arising from the axial-vector hadron part of the �Z box diagram, <ehA
�Z. This formulation,

based on dispersion relations, relates the �Z contributions to moments of the F�Z
3 interference structure

function. It has a clear connection to the pioneering work of Marciano and Sirlin, and enables a systematic

approach to improved numerical precision. Using currently available data, the total correction from all

intermediate states is <ehA
�Z ¼ 0:004 4ð4Þ at zero energy, which shifts the theoretical estimate of the

proton weak charge from 0.071 3(8) to 0.070 5(8). The energy dependence of this result, which is vital for

interpreting the Qweak experiment, is also determined.
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As modern parity-violating (PV) experiments press to
ever improving levels of precision, they remain a vital
complement to direct tests of the standard model at the
high energy frontier. The classic example of this, involving
precise measurements of parity violation in atoms, led to a
remarkably accurate determination of sin2�W . A comple-
mentary PVelectron-proton scattering measurement under-
way by theQweak Collaboration [1] at Jefferson Lab has the
potential to increase the mass scale associated with new
physics to 2 TeVor higher, provided that the critical radia-
tive corrections are under control. In this Letter we present
a new formulation of the important�Z radiative corrections
which allows for their controlled, systematic evaluation.

Including electroweak radiative corrections, the proton
weak charge is defined, at zero electron energy E and zero
momentum transfer, as [2]

Qp
W ¼ ð1þ ��þ�eÞð1� 4sin2�Wð0Þ þ �0

eÞ
þhWW þhZZ þh�Zð0Þ; (1)

where sin2�Wð0Þ is the weak mixing angle at zero momen-
tum, and the corrections��,�e and�

0
e are given in [2] and

references therein. The contributions WW and ZZ arise
from the WW and ZZ box and crossed-box diagrams, and
can be computed perturbatively. They are expected to be
energy independent for electron scattering in the GeV
range. By contrast, the �Z interference correction
h�ZðEÞ depends on physics at both short and long-distance
scales.

In the classic work of Marciano and Sirlin (MS) [3],
h�Zð0Þ was evaluated in a quark model-inspired loop

calculation using either a ‘‘perturbative’’ (P) or a ‘‘non-
perturbative’’ (NP) ansatz,

h�Zð0Þ ¼ veðM2
ZÞ

5�

2�
BPðNPÞ; (2)

where veðM2
ZÞ ¼ ð1� 4ŝ2Þ, and ŝ2 � sin2�WðM2

ZÞ ¼
0:231 16 in the MS scheme [4].
The perturbative ansatz [3]

BP ¼ ln
M2

Z

m2
þ 3

2
(3)

is the free quark model result, with m a hadronic mass
scale, and shows the leading-log behavior. For the non-
perturbative ansatz, BNP ¼ Km þ Lm is the sum of a long-
distance part, Lm, and a short-distance part, Km, with

Km ¼
Z 1

m2

du

uð1þ u=M2
ZÞ
�
1� �sðuÞ

�

�
: (4)

Here m is a mass scale representing the onset of asymp-
totic behavior at large loop momenta, and the factor
ð1� �sðuÞ=�Þ is the lowest-order correction induced by
the strong interactions. In Ref. [3] Lm is taken to be the
elastic nucleon (Born) contribution, which is evaluated to
be 2.04 using the same dipole form factors for both the
electromagnetic and axial-vector coupling. MS [3] origi-
nally adopted the value Km ¼ 9:6� 1, based on calcula-
tions with m in the range 0.3–1.0 GeV. A more recent
calculation by Bardin et al. [5] sets 0:5 � m � 0:6 GeV,
over which Km varies from 9.20 to 9.17 using a 3-loop
evaluation of �s. Marciano [6] gives an updated value for
BNP of 11:0� 1:0, but in view of the high momentum
scales in Eq. (4), suggests replacing � by �ðM2

ZÞ in
Eq. (2). This value for h�Z is the one adopted in

Ref. [2], and contributes almost half of the error in the
theoretical estimate Qp

W ¼ 0:0713ð8Þ.
To progress in a systematic way beyond the approach of

MS [3], and to determine the dependence on energy E, we
present a new formulation of the box diagram contribution
in which the dominant part of the correction is expressed
in terms of empirical moments of structure functions.
At forward angles one can compute h�ZðEÞ from its
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imaginary part using dispersion relations [7]. The imagi-
nary part depends on the PV ep ! eX cross section, which
can be expressed in terms of the product of leptonic and
hadronic tensors. Following standard conventions [4], the
hadronic tensor can be written in terms of the interference
electroweak structure functions as

MW��
�Z ¼�g��F�Z

1 þp�p�

p �q F�Z
2 � i"����

p�q�

2p �qF
�Z
3 ; (5)

where p and q are the four-momenta of the proton and

exchanged boson, respectively. The F�Z
1;2 contributions to

h�Z involve the vector hadron coupling of the Z, and were

recently computed in Refs. [7–10].

Our focus here is on the F�Z
3 contribution involving the

axial-vector hadron coupling of the Z. Following an analo-
gous derivation in Ref. [8], we can write

=mhA
�ZðEÞ ¼

1

ð2MEÞ2
Z s

M2
dW2

�
Z Q2

max

0
dQ2 veðQ2Þ�ðQ2ÞF�Z

3

1þQ2=M2
Z

�
�

2ME

W2 �M2 þQ2
� 1

2

�
; (6)

with s ¼ M2 þ 2ME and Q2
max ¼ 2MEð1�W2=sÞ. The

real part is determined from the dispersion relation

<ehA
�ZðEÞ ¼

2

�

Z 1

0
dE0 E0

E02 � E2
=mhA

�ZðE0Þ; (7)

which accounts for both the box and crossed-box terms.
Unlike the vector hadronic correction <ehV

�ZðEÞ, which
vanishes at E ¼ 0, the axial-vector hadronic correction
<ehA

�ZðEÞ remains finite, and is dominant in atomic parity

violation at very low electron energies [11].
We incorporate one further improvement over earlier

calculations by allowing for the Q2 dependence of �ðQ2Þ
and sin2�WðQ2Þ ¼ 	ðQ2Þŝ2 in Eq. (6) due to boson self-
energy contributions. Both quantities vary significantly
over the range ofQ2 relevant to these integrals. The photon
vacuum polarization expression is well-known, and ex-
pressions for the universal fermion and boson contributions
to 	ðQ2Þ are given in Ref. [12]. Following Ref. [3], we use
effective quark masses to reproduce the hadronic contri-

bution of ��ð5Þ
hadðM2

ZÞ ¼ 0:027 86 obtained from dispersion

relations [4], yielding 	ð0Þ ¼ 1:030. This is sufficiently
accurate for the purpose of calculating the box contribu-
tions. In the numerical results that follow, the effect of
using �ðQ2Þ and veðQ2Þ reduces the total contribution to
Eq. (7) by 17% relative to using � and veðM2

ZÞ.
The imaginary part of hA

�Z can be split into three re-

gions: (i) elastic (el) with W2 ¼ M2; (ii) resonances (res)
with ðMþm�Þ2 � W2 & 4 GeV2; and (iii) deep inelastic
(DIS), with W2 > 4 GeV2. Contributions from region
(i) can be written in terms of the elastic form factors as

F�ZðelÞ
3 ðQ2Þ ¼ �Q2Gp

MðQ2ÞGZ
AðQ2Þ
ðW2 �M2Þ: (8)

For the proton magnetic form factor Gp
M we use the recent

parametrization from Ref. [13] (the results are similar if
one uses a dipole with mass 0.84 GeV), and take the axial-
vector form factor to beGZ

AðQ2Þ ¼ �1:267=ð1þQ2=M2
AÞ2

with MA ¼ 1:0 GeV. A virtue of the dipole forms is that
the integrals (6) and (7) can be performed analytically,
which provides a useful cross-check.
To simplify notation in what follows, we denote<ehA

�Z

byhA
�Z, since that is the quantity of interest in Eq. (1). The

result for the elastic contribution h
AðelÞ
�Z ðEÞ is shown in

Fig. 1. It agrees exactly with the direct loop calculations
ofhA

�Z in Refs. [14,15], in which the intermediate nucleon

is off-shell. It also agrees exactly at E ¼ 0 with the value
Lm ¼ 2:04 if the parameters are adjusted to correspond to
those of MS [3].

For the resonance contributions hAðresÞ
�Z from region (ii),

we use the parametrizations of the transition form factors
from Lalakulich et al. [16], but with modified isospin
factors appropriate to �Z. These form factors have been
fitted to the Jefferson Lab pion electroproduction data
(vector part) and pion production data in � and �� scattering
at ANL, BNL, and Serpukhov (axial-vector part). The
parametrizations include the lowest four spin-1=2 and
3=2 states in the first and second resonance regions, up to
Q2 ¼ 3:5 GeV2. At larger Q2 the resonance contributions
are suppressed by theQ2 dependence of the transition form
factors, which is stronger for the dominant �ð1232Þ reso-
nance than for the higher-mass resonances [16]. The re-

sulting resonance contributionh
AðresÞ
�Z ð0Þ is smaller than the

elastic term at E ¼ 0, but decreases less rapidly with
increasing energy. Varying the Q2 dependence of the
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FIG. 1 (color online). Real part of hA
�ZðEÞ as a function of

incident electron energy E. Shown are the elastic (solid) and
resonance (dot-dashed) contributions. For the DIS part, the
high-Q2, n � 3 term (dotted) is negligibly small. The two Q2 <
1 GeV2 estimates (long and short dashes) show a very mild E
dependence. Not shown is the dominant high-Q2, n ¼ 1 mo-
ment, which is 32:8� 10�4, and is independent of E.
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axial-vector form factors, which is not well determined,
has a negligible effect on these results.

To compute the DIS contributions from region (iii) it is
convenient to interchange the order of integration in (6)
and (7), in which case the integration over energy can be
performed analytically [9]. A further change of variable
from W2 to Bjorken x ¼ Q2=ðW2 �M2 þQ2Þ gives,

h
AðDISÞ
�Z ðEÞ ¼ 2

�

Z 1

0
dQ2 veðQ2Þ�ðQ2Þ

Q2ð1þQ2=M2
ZÞ

�
Z xmax

0
dxF�Z

3 ðx;Q2Þfðr; tÞ;

fðr; tÞ ¼ 1

t2

�
log

�
1� t2=r2

�
þ 2t tanh�1

�
t=r

��
; (9)

with r � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p
, t � 4MEx=Q2, and

xmax ¼ Q2=ðW2
min �M2 þQ2Þ. For t ¼ 0, we find

fðr; 0Þ ¼ ð2r� 1Þ=r2. In the free quark model limit with

F�Z
3 ¼ ð5=3Þx
ð1� xÞ, Eq. (9) then gives exactly the per-

turbative result of Eq. (3) for E ¼ 0 (ignoring the Q2

dependence of � and ve).
To proceed, we divide the Q2 integral of the full ex-

pression (9) into a low-Q2 part, where the structure func-

tion F�Z
3 is relatively unknown, and a high-Q2 part

(Q2 >Q2
0), where at leading order (LO) the structure

functions can be expressed in terms of valence quark
distributions qv ¼ q� �q [4],

F�ZðDISÞ
3 ðx;Q2Þ ¼ X

q

2eqg
q
Aqvðx;Q2Þ: (10)

At highQ2 and low E, the integrand in (9) can be expanded
in powers of x2=Q2, yielding a series whose coefficients
are structure function moments of increasing rank,

h
AðDISÞ
�Z ðEÞ ¼ 3

2�

Z 1

Q2
0

dQ2 veðQ2Þ�ðQ2Þ
Q2ð1þQ2=M2

ZÞ
�
Mð1Þ

3 ðQ2Þ

þ 2M2

9Q4
ð5E2 � 3Q2ÞMð3Þ

3 ðQ2Þ þ . . .

�
: (11a)

For completeness, we also quote the result for the vector
hadronic correction,

h
VðDISÞ
�Z ðEÞ ¼ 2ME

�

Z 1

Q2
0

dQ2 �ðQ2Þ
Q4ð1þQ2=M2

ZÞ
�

�
Mð2Þ

2 ðQ2Þ þ 2

3
Mð2Þ

1 ðQ2Þ

þ 2M2

3Q4
ðE2 �Q2ÞMð4Þ

2 ðQ2Þ

þ 2M2

5Q4
ð4E2 � 5Q2ÞMð4Þ

1 ðQ2Þ þ . . .

�
: (11b)

In Eqs. (11) the moments of the structure functions are
defined as

MðnÞ
i ðQ2Þ �

Z 1

0
dxxn�2F �Z

i ðx;Q2Þ; i ¼ 1; 2; 3; (12)

where F �Z
i ¼ fxF�Z

1 ; F�Z
2 ; xF�Z

3 g. In approximating the

upper limit xmax on the x integrals in Eqs. (11) by 1,
the resulting error is less than 10�4 for Q2 > 1 GeV2.

The large-x contributions to MðnÞ
i ðQ2Þ become more im-

portant for large n; however, the higher moments are sup-
pressed by increasing powers of 1=Q2. In practice, the
integrals in Eqs. (11) are dominated by the lowest mo-
ments, with the 1=Q2 corrections being relatively small in
DIS kinematics.
Eqs. (11) are major new results which provide a system-

atic framework within which to evaluate the radiative
corrections. For the axial-vector hadron part, the lowest

moment, Mð1Þ
3 ðQ2Þ, is the �Z analog of the GLS sum rule

[17] for �N DIS, which at LO counts the number of
valence quarks in the nucleon. The corresponding quantity
for �Z is

P
q2eqg

q
A ¼ 5=3, so that at next-to-leading order

(NLO) in the MS scheme

Mð1Þ
3 ðQ2Þ ¼ 5

3

�
1� �sðQ2Þ

�

�
;

Mð3Þ
3 ðQ2Þ ¼ 1

3
ð2hx2iu þ hx2idÞ

�
1þ 5�sðQ2Þ

12�

�
;

(13)

where hx2iq ¼
R
1
0 dxx

2qvðx;Q2Þ. Hence, the lowest (n¼1)

moment contribution to Eq. (11a) is identical to the MS
result [3] in Eq. (4). However, the parameter Q2

0 in

Eq. (11a) has a slightly different interpretation than the
mass parameter m2 of Eq. (4). Here Q0 corresponds to
the momentum above which a partonic representation of
the nonresonant structure functions is valid, and above
which the Q2 evolution of parton distribution functions
(PDFs) via the Q2 evolution equations is applicable. We
takeQ2

0 ¼ 1 GeV2, which coincides with the typical lower

limit of recent sets of PDFs [18,19]. The computation of

the vector hadronic contribution to h
ðDISÞ
�Z proceeds in a

similar manner, and will be discussed elsewhere [20].
To evaluate the moments in Eq. (11a) we use several

NLO parametrizations of PDFs determined from global fits
[18,19]. The results are summarized in Fig. 1. Variations in
the values of �sðM2

ZÞ among the data sets considered had a
negligible effect on the n ¼ 1 value of 0.0033. The n ¼ 3
moments for different data sets are virtually identical, and
give negligibly small contributions.
TheE dependent terms in Eq. (11a) should also be small,

since these depend on n � 3 moments. However, the ex-
pansion in Eq. (11a) is not strictly valid when E>Q2

0=2M.

To describe the E dependence in this region we evaluate

the difference h
AðDISÞ
�Z ðEÞ �h

AðDISÞ
�Z ð0Þ in Eq. (9) by re-

placing fðr; tÞ by fðr; tÞ � fðr; 0Þ. The results are indeed
small for E in the few GeV region, as the dotted line in
Fig. 1 indicates.
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For Q2 <Q2
0 a partonic description of the structure

functions is not valid. In particular, since the integral
over Q2 in Eq. (9) extends down to Q2 ¼ 0, and the upper
limit on the x integral, xmax, is also limited by Q2, one
requires the behavior of the structure functions at both low

x and low Q2. In the case of the vector F�Z
2 structure

function, conservation of the two vector currents requires

F�Z
2 �Q2 as Q2 ! 0. By contrast, F�Z

3 depends on both

vector and axial-vector currents, and the nonconservation
of the latter means that no similar constraint exists [16].

In the absence of data on F�Z
3 ðx;Q2Þ in the low-x,

low-Q2 region, we consider models for the possible x
and Q2 dependence, obeying the following conditions:

(i) F�Z
3 ðxmax; Q

2Þ should not diverge in the limit Q2 ! 0;

(ii) F�Z
3 ðx;Q2Þ should match the partonic structure function

at Q2 ¼ Q2
0. For the parametrization of Ref. [18] we note

that F�Z
3 ðx;Q2

0Þ � x�0:7 as x ! 0. With this in mind, we

consider two models for Q2 <Q2
0.

Model 1 sets

F�Z
3 ðx;Q2Þ ¼

�
1þ�2=Q2

0

1þ�2=Q2

�
F�Z
3 ðx;Q2

0Þ; (14)

which has the property that F�Z
3 ðxmax; Q

2Þ � ðQ2Þ0:3 as

Q2 ! 0. Here �2 is a parameter that can be adjusted to
examine the model sensitivity of the integral in Eq. (9).
For �2 in the range ð0:4–1:0Þ GeV2, we obtain a �10%
variation in the values for hA

�ZðEÞ shown in Fig. 1.

Model 2 freezes F�Z
3 at the Q2 ¼ Q2

0 value for all W2,

which is equivalent to setting F�Z
3 ðx; Q2Þ ¼ F�Z

3 ðx0; Q2
0Þ,

with x0 ¼ xQ2
0=ðð1� xÞQ2 þ xQ2

0Þ. For this model, F�Z
3 is

constant as Q2 ! 0, and yields a 15% larger contribution
to hA

�ZðEÞ than Model 1, as illustrated in Fig. 1.

The total correction to hA
�Z is given by the sum

(elþ resþ DIS), and is shown in Fig. 2 as a function of
E. As demonstrated, the E dependence arises predomi-
nantly from the elastic and resonance contributions. We
assign a very conservative uncertainty estimate equal to
twice the low-Q2 DIS value. This allows for uncertainties
in the resonance and low-Q2 DIS contributions, and in the
effect of the running coupling constants on the dominant
n ¼ 1 contribution. The total contribution to hA

�Z is

0.004 4(4) at E ¼ 0, and 0.003 7(4) at E ¼ 1:165 GeV
(the Qweak energy). This should be compared to the value
0.005 2(5) used in Ref. [2], which is assumed to be energy
independent. Also shown in Fig. 2 is the total h�Z ¼
hV

�Z þhA
�Z using the result for hV

�Z from Ref. [8], which

has an uncertainty that grows with E.
Our value shifts the theoretical estimate for Qp

W from
0.0713(8) to 0.0705(8), with a total energy dependent
correction h�ZðEÞ �h�Zð0Þ of 0:0040þ0:0011

�0:0004 at E ¼
1:165 GeV. A similar uncertainty would be obtained using
the estimate of hV

�Z from Ref. [9], while a larger uncer-

tainty on the vector hadron correction was claimed in
Ref. [10]. These uncertainties can be reduced with future
PV structure function measurements at low Q2, such as
those planned at Jefferson Lab. The high precision
determination ofQp

W would then allow more robust extrac-
tion of signals for new physics beyond the standard model.
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