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We compare the response function of an Unruh-DeWitt detector for different space-times and different

vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the

response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both

detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the

Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two

cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence

principle is restored at the horizon.
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Introduction.—The equivalence principle is the concep-
tual basis for general relativity [1]. It equates a gravita-
tional field with a uniformly accelerating reference frame
locally—by making measurements in a small enough re-
gion of space-time one cannot distinguish a gravitational
field from a uniformly accelerating frame of reference.
‘‘Small enough’’ means that one does not notice the tidal
forces of the gravitational field. Here we investigate the
Hawking and Unruh radiation detected (or not detected) by
a detector in Schwarzschild space-time versus Rindler
space-time. Whether radiation is detected or not depends
not only on the space-time but also on the vacuum state—
Boulware vacuum, Unruh vacuum, Minkowski vacuum,
Hartle-Hawking vacuum or Rindler vacuum. We find that
a detector in Rindler space-time with respect to Rindler
vacuum is comparable to a detector in Schwarzschild
space-time with respect to Boulware vacuum. In this case
both detectors do not detect radiation and the equivalence
principle is valid. Next we find that a detector in Rindler
space-time with respect to Minkowski vacuum is compa-
rable to a detector in Schwarzschild space-time with re-
spect to Unruh vacuum. In this case both detectors detect
radiation, but for a given, equivalent acceleration the de-
tector in the Schwarzschild space-time measures a higher
temperature. This gives a detailed violation of the equiva-
lence principle. As the detector in the Schwarzschild
space-time approaches the horizon the two temperatures
approach the same value. Thus, near the horizon the
equivalence principle is restored.

Before proceeding to the calculations one can ask what
is the conceptual basis for this violation of the equivalence
principle in the situations described above. The reason
rests with the local nature of the equivalence principle
versus the nonlocal nature of quantum phenomena. If one
is allowed to make global space-time measurements then
one can distinguish between a uniform acceleration and a
gravitational field. On the other hand, quantum mechanics
has some inherent nonlocality. The prime example is Bell’s
inequality experiments where particles have a nonlocal

entanglement with one another. Also in quantum field
theory one expands a field in terms of normal modes. In
flat space these modes are nonlocal plane waves. Thus it is
not surprising that a quantum effect like Hawking radiation
or Unruh radiation should violate the equivalence princi-
ple. The surprise is that the equivalence principle is re-
stored as the gravitational field becomes more intense, i.e.,
at the event horizon. Finally, we note that there have been
other suggestions that the quantum phenomenon of neu-
trino oscillations [2–4] violate the equivalence principle.
Unruh-Dewitt detector in various space-times and va-

cua.—To determine if an observer measures radiation we
use the standard Unruh-Dewitt detector coupled to a mass-
less scalar field, �ðxÞ which has two energy levels E0 < E.
References [5,6] have details of the construction of this
type of detector. The detector-field coupling is given by the
interaction g�ð�Þ�ðxð�ÞÞ with g being the coupling con-
stant,�ð�Þ is the detector’s monopole moment, and xð�Þ ¼
x�ð�Þ is the detector’s trajectory as a function of its proper
time, �. The transition rate per unit proper time, TðEÞ, for
such a detector to be excited from its ground state E0 to a
higher energy E is given by (here and throughout the Letter
we set G ¼ c ¼ 1)

TðEÞ¼g2
X
E

jhEj�ð0ÞjE0ij2
Z þ1

�1
e�iðE�E0Þ��Gþð��Þdð��Þ:

(1)

In the above expression Gþðx; x0Þ ¼ h0j�ðxÞ�ðx0Þj0i is
the positive frequency Wightman function since we are
studying excitations from E0 to E and �� ¼ �� �0. For us
the important part of (1) it the response function per unit
proper time [5]

F ðEÞ ¼
Z þ1

�1
e�iðE�E0Þ��Gþð��Þdð��Þ: (2)

It is important to note that Gþ is defined with respect to
some vacuum state j0i and picking a different vacuum state
can lead to different F ðEÞ’s. Some vacuum choices can
lead to the detector being excited while other choices of
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vacuum leave the detector in the ground state. It is this
subtle issue of the choice of vacuum that prevents simple
violations of the equivalence principle. F ðEÞ depends of
the space-time trajectory of the detector but is independent
of its coupling and monopole moment. To simplify the
calculations we take space-time as 2D. We do not lose
any essential features of the response function in this way.
We will write the metrics for our 2D space-times in light
front coordinate form ds2 ¼ Cðui; viÞduidvi. The index i
will indicate the particular space-time and vacuum being
considered. Different forms of the light front form metric
give different forms of the wave equation with different
normal mode solutions—e�i!ui and e�i!vi , where ! is the
energy of the mode. From [5] the 2D Wightman function
for metrics in the light front form is

Gþðx; t; x0; t0Þ ¼ � 1

4�
ln½ð�ui � i�Þð�vi � i�Þ�; (3)

where �ui ¼ uiðx; tÞ � uiðx0; t0Þ and �vi ¼ viðx; tÞ �
viðx0; t0Þ. The crucial issue—which vacuum the response
function is being calculated with respect to—is embedded
in the form of the 2D Wightman function in (3). This in
turn is determined by the specific form of the metric. The
character of the vacuum is determined by the form of the
metric in the following way: (i) The form of the metric
determines the specific form of the wave equation in the
space-time which in turn determines the normal mode
solutions, ukðx; tÞ. (ii) A field,�, can be expanded in terms

of these modes as � ¼ P
kðakuk þ ayk u

�
kÞ. (iii) Turning the

ak, a
y
k into annihilation and creation operators then defines

the vacuum, e.g., akj0i ¼ 0; ayk j0i ¼ j1i.
Minkowski space-time.—Since for two of the cases

studied below—Schwarzschild space-time for Boulware
vacuum and Rindler space-time for Rindler vacuum—the
response function reduces to essentially Minkowski space-
time we will study this example first. The light front
coordinates for Minkowski space-time are uMM ¼ t� x,
vMM ¼ tþ x, the conformal factor is Cðu; vÞ ¼ 1. The
subscript i ¼ MM stands for Minkowski space-time and
Minkowski vacuum. Taken together this gives ds2 ¼
dt2 � dx2 ¼ duMMdvMM. For a detector at rest or moving
with uniform velocity, v, in Minkowski space-time one has
�uMM ¼ �vMM ¼ ��. If the detector is at rest �� ¼ �t

while if the detector is moving�� ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. From (3)

this Wightman function is

Gþ
MM ¼ � 1

4�
ln½ð��� i�Þ2�: (4)

(For a detector moving with uniform velocity v one must

absorb a factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
into �). Inserting (4) into the

response function (2) and evaluating the integral via a
contour integration gives FMMðEÞ ¼ 0 since E> E0.
This is what one expects—an inertial detector in
Minkowski will not spontaneously get excited.

Rindler space-time.—Next we turn to Rindler space-
time which is Minkowski space-time as seen by a uni-
formly accelerated observer with acceleration a. The
path of such an observer is given by

t ¼ 1

a
sinhða�Þ; x ¼ 1

a
coshða�Þ; (5)

where � is the detector’s proper time. The Rindler space-
time in light front form is

ds2 ¼ dt2 � dx2 ¼ duRMdvRM; (6)

where uRM ¼ t� x, vRM ¼ tþ x giving ð�uRM � i�Þ�
ð�vRM � i�Þ ¼ ð�t� i�Þ2 � ð�xÞ2. The coordinates t
and x are given by (5). The subscript RM stands for
Rindler space-time and Minkowski vacuum state. This is
explained in more detail below. Using (5) this becomes

1

a2
½ð sinhða�Þ � sinhða�0Þ � i�Þ2 � ððcoshða�Þ

� coshða�0ÞÞ2� ¼ 4

a2
sinh2

�
að��� i�Þ

2

�
:

Using these results in (3) gives the Wightman function for
this form of Rindler

Gþ
RM ¼ � 1

4�
ln

�
4

a2
sinh2

�
að��� i�Þ

2

��
: (7)

Inserting this Wightman function into the response func-
tion (2), and performing a contour integration gives [5,7] a
Planckian response function

F RMðEÞ / 1

EðeE=kBTRM � 1Þ ; where kBTRM ¼ a

2�
; (8)

where kB is Boltzmann’s constant. This is the Unruh
temperature given in terms of the acceleration, a, of the
observer. The vacuum state associated with the form of the
Rindler metric given by (6) is called the Minkowski vac-
uum [8,9]. It is with respect to this vacuum state that an
observer will have a nonzero response function and will
detect particles.
Rindler space-time can also be cast in Rindler coordi-

nates (�, �) which are defined via t ¼ ea�

a sinhða�Þ; x ¼
ea�

a coshða�Þ, In these coordinates the Rindler metric is

ds2 ¼ e2a� ðd�2 � d�2Þ ¼ e2a�duRRdvRR; (9)

where the final form is in terms of light front coordinates
uRR ¼ �� � and vRR ¼ �þ � . The subscript RR stands
for Rindler space-time with respect to the Rindler vacuum
state. The coordinate � plays the role of time and � plays
the role of position. The proper time of the detector is � ¼
ea�� and ae�a� is the proper acceleration. In this set of
coordinates different �’s correspond to picking different
proper accelerations. Thus for a detector with a fixed
proper acceleration � ¼ const so that �uRR ¼ �vRR ¼
�� ¼ e�a���. The resulting Wightman function is then
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the same as that for Minkowski space-time given in (4).
One must now absorb a factor of ea� into the i� term. Thus
as for Minkowski space-time the response function is zero,
F RRðEÞ ¼ 0. This vacuum Rindler vacuum state has been
used [8] to preserve the equivalence principle against the
following argument: ‘‘If a detector in uniform accelerated
motion detects radiation but a detector at rest in a gravita-
tional field without a horizon (e.g., a detector in the gravi-
tational field of Earth) does not detect radiation cannot one
in this way distinguish a gravitational field from an accel-
eration?’’ The answer is that one needs to compare the two
cases in question in the appropriate vacuum state—what
Ginzburg and Frolov [8] call ‘‘corresponding vacua.’’ Thus
one should compare the Rindler vacuum of the accelerated
observer with the Boulware vacuum (this vacuum state is
discussed next) of the detector fixed in a gravitational field
without a horizon. In this way the equivalence principle is
preserved against the preceding argument.

Schwarzschild space-time.—We now calculate the
response function for detector in Schwarzschild space-
time. Starting from the form of the metric ds2 ¼
ð1� 2M=rÞdt2 � ð1� 2M=rÞ�1dr2 we transform this
into the light front form

ds2 ¼
�
1� 2M

r

�
duSBdvSB: (10)

In this equation uSB ¼ t� r� and vSB ¼ tþ r� with r� ¼R
dr

1�2M=r ¼ rþ 2M lnjr=2M� 1j. The subscript SB

stands for Schwarzschild space-time in the Boulware vac-
uum state. For a detector at a fixed radius r ¼ R, r� !
R� ¼ Rþ 2M lnðR� 2MÞ and so�r� ¼ 0. Thus,�uSB ¼
�vSB ¼ �t. The relationship between proper time, �, and

Schwarzschild time, t, is �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R

q
�t. Combining

these results we see that the Wightman function for the
Schwarzschild metric of the form (10) is essentially the
same as the Minkowski space-time Wightman function in

(4). One must absorb the constant factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
into

�. Thus as for Minkowski space-time the response function

for this form of the Schwarzschild metric is zero,
F SBðEÞ ¼ 0. This result may seem surprising since it
appears we have shown Hawking radiation does not exist.
Actually what this shows is that there is no radiation with
respect to the vacuum state defined by the choice of the
Schwarzschild metric in (10). This vacuum state (10) is
called the Boulware vacuum [10]. There is no Hawking
radiation with respect to the Boulware vacuum. However
the Boulware vacuum is not physical near the horizon
where the energy momentum tensor diverges.
Two vacuum states which are well behaved at the hori-

zon are the Hartle-Hawking vacuum [11] and Unruh vac-
uum [12]. To study these two vacuum states we write the
Schwarzschild metric in Kruskal form

ds2 ¼ 2M

r
e�r=2MduSHdvSH;

with uSH ¼ �4Me�uSB=4M, vSH ¼ 4MevSB=4M where uSB,
vSB were previously defined and r ¼ rðuSH; vSHÞ is an
implicitly defined function of uSH, vSH. The subscript SH
stands for the Schwarzschild space-time in the Hartle-
Hawking vacuum. The Hartle-Hawking vacuum uses the
coordinates, uSH, vSH, to calculated�uSH,�vSH which are
then used to calculate the associated Wightman function.
The Hartle-Hawking vacuum corresponds to the state when
a Schwarzschild black hole is in equilibrium with a thermal
bath which is at the same temperature as that of the black
hole. For a realistic black hole formed via collapse the
Unruh vacuum is a better choice. The Unruh vacuum
corresponds to the Boulware vacuum in the far past and
the Hartle-Hawking vacuum in the far future. In detail for
the Unruh vacuum a detector fixed r ¼ R has �uSU, �vSU

given by [5]

�uSU ¼ �uSH ¼ �4MeR
�=4Mðe�t=4M � e�t0=4MÞ;

�vSU ¼ �vSB ¼ �t:
(11)

R� is defined by setting r ¼ R in the expression for r�;
�t ¼ t� t0. Using (11) gives

ð�uSU � i�Þð�vSU � i�Þ ¼ 8MeR
�=4Me�ðtþt0Þ=8Mð�t� i�Þ sinh

�
�t� i�

8M

�

¼ 8MeR
�=4Me�ðtþt0Þ=8M

�
��� i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
�
sinh

�
��� i�

8M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
�
: (12)

Inserting this result into (3) gives the Wightman function
which is essentially the same as the Wightman function for
the Rindler metric in the Minkowski vacuum (4) but with a
replaced by 1=ð4M ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M=R
p Þ, which is the blue shifted

surface gravity � ¼ 1=4M of the black hole. Inserting this
Wightman function in the response function (2) then leads
to the same type of contour integral as before. The factor
e�ðtþt0Þ=8M does not contribute to the contour integration

and the multiplicative factor, ��� i�, is essentially that
for Minkowski space-time and also does not contribute.
The result is again a Planckian spectrum

F SUðEÞ / 1

EðeE=kBTSU � 1Þ
where kBTSU ¼ 1

8�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
(13)
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which is the temperature measured by the fixed detector
with respect to the Unruh vacuum for Schwarzschild
space-time. Doing the calculation in the Hartle-Hawking
vacuum yields the same temperature. The only difference
is that the Eq. (12) for the Hartle-Hawking vacuum is
proportional to sinh2ð. . .Þ rather than sinhð. . .Þ. This leads
to an unimportant, multiplicative factor of 2 in F SHðEÞ.
This result for TSU from (13) is consistent with the higher
dimensional embedding approach of [13,14]. In these
works the temperature of the static Schwarzschild observer
in (13) is obtained as the Unruh temperature in a six-
dimensional space-time using an effective six-acceleration
equals the blue shifted surface gravity, � ¼ 1=
ð4M ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M=R
p Þ. The magnitude of the real acceleration

measured by this fixed observer, r ¼ R, in the
Schwarzschild space-time, is given by [15]

aS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�Vr�V

q
V

¼ M

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p ; (14)

where V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
is the redshift factor for the

Schwarzschild space-time. A similar calculation for the
Rindler space-time (using the Schwarzschild-like form of
the Rindler metric ds2 ¼ ð1þ 2axÞdt2 � ð1þ 2axÞ�1dx2)
yields aR ¼ a as expected. It is the results in (13) and (14)
which lead to a violation of the equivalence principle when
compared to similar measurements in Rindler space. Both
the fixed observer in Schwarzschild and the observer in
Rindler space should measure the same acceleration so we
set aR ¼ a ¼ aS where a is the acceleration of the Rindler
observer. If we then substitute this into (8) we get

kBTRM ¼ M

2�R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p : (15)

By comparing (13) and (15) it is clear that TRM < TSU

when R> 2M. Thus one can tell the two systems apart
by making local space-time measurements. As one ap-
proaches the horizon, R ¼ 2M, the two results converge
to the same (infinite) value. Thus at the horizon the equiva-
lence principle is restored. The procedure for an observer
equipped with a means of measuring local acceleration and
an Unruh-Dewitt detector for measuring temperature is as
follows: (i) Measure the local acceleration; (ii) insert this
into Eq. (8); (iii) measure the temperature via the Unruh-
Dewitt detector. If the temperature is higher than that
calculated in step (ii) then one is in a gravitational field
and not in an accelerating frame.

Summary.—In this Letter we have shown that there is a
violation of the equivalence principle when, for the same
locally measured acceleration, one compares the tempera-
ture of a detector fixed at r ¼ R> 2M in the background
of a Schwarzschild black hole and a uniformly accelerating
detector. Both detectors will detect thermal radiation,
but for equal, local accelerations the detector in the

gravitational background will measure a higher tempera-
ture than the accelerating detector. The subtle feature in the
analysis arises in that one must compare the response
function of the detector with respect to what Ginzburg
and Frolov [8] call ‘‘corresponding’’ or ‘‘matched’’ vacua.
When comparing an accelerating detector in the Rindler
vacuum with a fixed detector in Schwarzschild space-time
in the Boulware vacuum, both detectors will not detect
radiation. On the other hand, comparing an accelerating
detector in Minkowski vacuum with a fixed detector in
Schwarzschild space-time in Unruh vacuum or Hartle-
Hawking vacuum, both detectors will detect thermal radia-
tion. Up to this point the equivalence principle works
qualitatively. However, if one compares the values of the
temperature of the thermal radiation measured in each
case—(8) for the accelerating detector and (13) for the
detector fixed in a gravitational field—one finds that for
the same acceleration, the detector in gravitational field
will measure a higher temperature thus allowing one to tell
the two cases apart. As R ! 1, TSU ! 1=8�M while from
(15) TRM ! 0. This latter result occurs since as R ! 1 the
acceleration due to gravity goes to 0 as 1=R2, i.e., neither
the acceleration (14) nor the associated temperature TRM

from (15) are long range. Hawking radiation, since it is a
radiation field, falls off like 1=R and is a long range, and
thus does have a constant flux or temperature as R ! 1.
Conversely, as one approaches the horizon the two tem-
peratures, TSU and TRM, approach the same (infinite) value.
Thus quantum field theory or quantum mechanics appears
to become more compatible with the equivalence principle
and general relativity as one approaches the extreme con-
ditions near a black hole horizon. This could optimistically
be taken as a hint that gravity and quantum mechanics
become more compatible and begin to merge into a con-
sistent theory of quantum gravity at high energies or ex-
treme gravitational fields.
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