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We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an

associated five-dimensional anti–de Sitter space (AdS5) and/or four-dimensional conformal field theory

(CFT4) problem. The RSII solution is given as a perturbation of the AdS5-CFT4 solution, with the

perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ‘.

The brane metric is then a specific perturbation of the AdS5-CFT4 boundary metric. For low curvatures the

RSII solution reproduces 4D general relativity on the brane. Recently, AdS5-CFT4 solutions with a 4D

Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to

numerically construct large RSII static black holes with radius up to �20‘. For a large radius, the RSII

solutions are indeed close to the associated AdS5-CFT4 solution.
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Introduction.—The single brane Randall-Sundrum II
(RSII) model [1,2] is remarkable in that it is claimed to
yield 4D low energy physics for brane observers even
though the 5D geometry is not compact. By using argu-
ments from anti–de Sitter/conformal field theory (AdS/
CFT), it has been claimed that the low energy behavior of
this model for a brane observer is equivalent to 4D gravity
coupled to a conformal field theory [3–7]. A remarkable
conjecture was then made in Refs. [8–10] that static black
holes cannot exist in RSII for a radius much greater than the
AdS length ‘, although we note this is based on free field
theory intuition, which may not hold [11,12]. By using the
numerical methods of Refs. [13,14], black holes in 5D RSII
with a radius up to �0:2‘, and for 6D up to �2:0‘, were
constructed in Refs. [15–17]. However, by using the same
methods, it has subsequently been argued that even very
small RSII static black holes do not exist [18,19].

In this Letter, we first will make precise the claim that
low energy physics on the brane is described by gravity
coupled to a CFT. We shall explicitly show how to con-
struct low curvature solutions to RSII, including matter
on the brane, from an associated AdS5-CFT4 problem,
where the boundary metric is given by a particular pertur-
bation of the brane metric. An AdS5-CFT4 solution with a
Schwarzschild boundary metric has recently been numeri-
cally constructed by us and Lucietti [20], and in the second
half of the Letter we shall report on work where we modify
the numerical construction used there to compute the RSII
black hole solutions for both large and small radii.

Low curvature RSII solutions from AdS5-CFT4.—In
this section we will follow Ref. [6], although we note
that the emphasis is subtly different. Our aim is not to
derive an effective 4D description of gravity on the brane
as done in Ref. [6] but rather to explicitly demonstrate the
relation between solutions in AdS/CFT and corresponding
ones in RSII.

Consider a solution to AdS5-CFT4 with boundary metric

gð0Þ��. The 5D metric gAB obeying RAB ¼ � 4
‘2
gAB can be

written as

ds2 ¼ gABdx
AdxB ¼ ‘2

z2
½dz2 þ ~g��ðz; xÞdx�dx�� (1)

near the conformal boundary z ¼ 0, where the Fefferman-
Graham expansion dictates that

~g��ðz;xÞ¼gð0Þ��ðxÞþz2½Rð0Þ
��ðxÞ�1

4g
ð0Þ
��ðxÞRð0ÞðxÞ�

þz4½gð4Þ��ðxÞþt��ðxÞ�þ2z4 logzhð4Þ��ðxÞþOðz6Þ;
(2)

where the expressions for gð4Þ and hð4Þ can be found in

Ref. [21]. Here gð0Þ��ðxÞ and t��ðxÞ are the two constants of

integration for the bulk equations which are second order
in z. The constraint equations for this radial evolution

imply rð0Þ
� t�� ¼ 0 and t ¼ 1

16 ½Rð0Þ
��R

ð0Þ�� � 1
3 ðRð0ÞÞ2�, and

t�� gives the vacuum expectation value of the CFT4 stress

tensor as hTCFT
�� i ¼ t��=ð4�‘G5Þ.

We assume that for some boundary metric gð0Þ�� ¼ g��

a solution exists for boundary conditions in the IR of
the geometry such that the metric tends to the Poincaré
horizon of AdS. We further assume that solutions exist

for regular perturbations of the boundary metric gð0Þ�� ¼
g�� þ �2h�� in some finite neighborhood of � ¼ 0, so that

t��½gþ �2h� ¼ t��½g� þOð�2Þ.
From thisAdS5-CFT4 solution wewill construct an RSII

solution in the limit where brane curvatures are small
compared to the curvature of the bulk AdS5. We take two
copies of the solution above restricted to z � � and glue
them together on their common boundary. We then identify
the two halves under a Z2 action which leaves the orbifold
plane z ¼ �, the RSII brane with induced metric ���,
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fixed. The Israel conditions determine the matter on the
brane to have stress tensor

8�G4T
brane
�� ¼ 2

‘

�
K�� � K��� þ 3

‘
���

�
; (3)

where K�� ¼ � 1
2

z
‘ @z½‘

2

z2
~g��ðz; xÞ� is the extrinsic curva-

ture of the z ¼ � surface.
We begin the construction by choosing the perturbation

h�� so that ��� ¼ ‘2

�2
g��, and then

gð0Þ�� ¼ g�� þ �2

2

�
R�� � 1

6
g��R

�
þOð�4 log�Þ: (4)

It is convenient to work with the rescaled brane metric g��

rather than ���, since we are interested in the limit � ! 0.

Computing the brane matter stress tensor from (3) in
terms of the rescaled brane metric g�� gives the ‘‘Einstein

equation on the brane’’ derived in Ref. [6]:

G�� � 8�G4T
brane
��

¼ �2 log�b��½g� þ �2ð16�G4hTCFT
�� ½g�i

þ a��½g�Þ þOð�4 log�Þ; (5)

where (the separately conserved) tensors a�� and b�� are,

respectively,

a��½g� � �1
4r2R�� þ 1

12r�r�Rþ 1
24r2 �Rg�� þ 1

6RR��

þ 1
8R��R

��g�� � 1
24R

2g�� � 1
2R����R

��;

b��½g� � �1
2r2R�� þ 1

6r�r�Rþ 1
12r2Rg�� þ 1

3RR��

þ 1
4R��R

��g�� � 1
12R

2g�� � R����R
��:

(6)

The parameter � controls the curvature scale on the brane
relative to the AdS length, and � ! 0 gives the low curva-
ture limit on the brane where we see the usual 4D Einstein
equations are recovered.

Subject to the assumption that the AdS5-CFT4 solution
exists for boundary metric (4), we have constructed a brane-

world solution with metric ��� ¼ ‘2

�2
g�� perturbatively in �.

Working to higher order in � one will obtain further local
higher curvature terms together with terms involving func-
tional derivatives of the CFT4 stress tensor. We note that we
have not assumed g�� is a metric perturbation of flat space,

only that its curvature is everywhere small.
Interestingly, the leading correction in � for 4D Einstein

gravity comes from the Oð�2 log�Þ local four-derivative
term b��½g�. In the absence of brane matter, Tbrane

�� ¼ 0;

then as g�� is Ricci flat to order Oð�0Þ, the corrections a��

and b�� vanish to give

�G�� ¼ 16�G4hTCFT
�� ½g�i; (7)

whereG��½g� ¼ �2�G�� þOð�4Þ. This form of correction

was conjectured by Ref. [9], and here we have provided a
proof of this, although we emphasize that, by including
brane matter, the CFT correction is not the leading one.

5D static RSII black holes.—Setup.—In the previous
section we have seen how low curvature classical solutions

of the RSII model with brane metric ‘2

�2
g�� are related to

the existence of AdS5-CFT4 solutions with a boundary
metric a perturbation of g��. Consider large static vacuum

black holes in RSII. Provided there exists a static
AdS5-CFT4 solution with a 4D Schwarzschild as the
boundary metric and which asymptotes to the Poincaré
horizon of AdS in the IR, then large black holes in the
RSII scenario exist. Furthermore, these will be static, since
the AdS5-CFT4 solution they derive from has boundary

metric (4) with g being a Schwarzschild so that gð0Þ is static
(and will be to all orders in �) and the bulk geometry must
inherit the isometries of the boundary metric [22].
Such an AdS5-CFT4 solution has recently been found

[20] by using the new numerical approach of Ref. [23]. In
the remainder of this Letter, we will report on work where
we modify this numerical construction to replace the AdS
boundary (‘‘UV’’ end of the geometry) with an RSII brane
boundary condition and solve the resulting elliptic bound-
ary value problem. The details will be presented in a longer
forthcoming paper.
Following Ref. [23] we analytically continue our static

solution to the Euclidean signature and consider the solu-
tion to the 5D Einstein-DeTurck equations with a negative
cosmological constant:

RMN þ 4

‘2
gMN �rðM	NÞ ¼ 0 (8)

where 	M ¼ gPQð�M
PQ-

��M
PQÞ, �M

PQ is the connection asso-

ciated to the metric gAB that wewant to determine, and ��M
PQ

is a connection associated to a fixed reference metric �g. For
the Euclidean signature, the above equation is elliptic and
can be solved as a boundary value problem for well-posed
boundary conditions.
An important point is that a solution to this Einstein-

DeTurck equation need not be Einstein if 	A � 0. In
favorable situations, one can analytically show that solu-
tions with nonzero 	A, called ‘‘Ricci solitons,’’ cannot exist
[20]. However, even if they may exist, provided the elliptic
problem and boundary conditions are well-posed, solutions
should be locally unique. Hence, an Einstein solution
cannot be arbitrarily close to a soliton solution [24], and
one should easily be able to distinguish the Einstein solu-
tions of interest from solitons.
Following Ref. [20], we will choose a similar ansatz to

that used for theAdS5-CFT4 solution with a Schwarzschild
boundary, namely,

ds25 ¼
‘2

�ðr; xÞ2
�
r2Td
2 þ x2gðxÞS

fðrÞ2 d�2
ð2Þ þ

4A

fðrÞ4 dr
2

þ 4B

fðrÞ2gðxÞ dx
2 þ 2rxF

fðrÞ3 drdx
�
;

�ðr; xÞ ¼ ð1� r2Þ þ ~�ð1� x2Þ
~�ð1� r2Þ ; (9)
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where fðrÞ ¼ 1� r2 and gðxÞ ¼ 2� x2, and X ¼
fT; S; A; B; Fg are smooth functions (to be determined)
which depend on ðr; xÞ only. The (dimensionless) coordi-
nates ðr; xÞ both take values in the range ½0; 1�, and we
assume T; S > 0 and that AB� r2x2gðxÞF2=16> 0 to en-
sure that the metric is Euclidean with the correct topology.
In contrast to the setting in Ref. [20], now the function
�ðr; xÞ does not vanish at x ¼ 1, so there is no UV con-
formal boundary there. We choose the reference metric �g
to be (9) with T ¼ A ¼ B ¼ S ¼ 1 and F ¼ 0.

The boundaries of our domain are the same as in
Ref. [20] (and therefore so are the boundary conditions
for the functions X [25]), except that now x ¼ 1 corre-
sponds to the location of the brane. Here we impose the
vacuum Israel matching conditions [Eq. (3) with the left-
hand side equal to zero] together with 	x ¼ 0 and F ¼ 0,
which imply mixed Neumann-Dirichlet conditions for
the various functions X. Such boundary conditions have
been considered in Ref. [20], where they were shown to
give a regular elliptic system. Furthermore, they imply
@n	r ¼ 2

‘ 	r on the brane (where @n denotes the normal

derivative), which is compatible with obtaining an Einstein
solution with 	 ¼ 0 everywhere. Note that imposing the
Israel vacuum condition and both 	r ¼ 0 and 	x ¼ 0 on
the brane does not give a regular elliptic system [20,24].
We remark that for this negative tension orbifold brane
there is no maximum principle argument that rules out the
existence of a soliton solution. Hence wewill have to check
explicitly that our solution is Einstein and not a soliton—
indeed, we have found no solitons.

Finally, we note that our metric (9) has the dimension-

less parameter ~�which determines the inverse temperature

as � ¼ 4� ~�‘. This effectively controls the size of the
black hole relative to the cosmological constant scale.

Results.—Two approaches have been proposed in
Ref. [23] to solve (8). The Ricci flow method works
particularly well in finding the AdS5-CFT4 solution in
Ref. [20] since the solution is a stable fixed point of the
flow. All the RSII black holes we have found have a single
Euclidean negative mode, and hence the solution is an
unstable fixed point of the Ricci flow which makes this
method less practical. For this reason we have used the
Newton algorithm to find solutions. We have used two
independent codes: One is based on a pseudospectral col-
location approximation in r; x (up to 40� 40 points), and
the other is based on second-order finite difference. As
expected, the former gives highly accurate results, and the
data presented are for this code. The finite difference code
gives consistent, but less accurate, solutions for the reso-
lutions attainable.

To construct black holes whose proper radius on the
brane, R4, is large compared to ‘ [for instance, setting
~� ¼ 20 in (9)], we found that using the reference metric
�g as the initial guess was sufficient for Newton’s method to
converge. Once a large black hole had been obtained, we
could easily find nearby ones by simply perturbing both the

previous solution and the reference metric varying ~�.
Using this procedure we have been able to construct brane-
world black holes with R4=‘ 2 ½0:07; 20�. It should be
possible to extend this range by increasing the resolution,
but we have not attempted to do so.
In Fig. 1, we have plotted the area of the full 5D black

hole as a function of the radius of the horizon on the brane,
comparing it with the analogous quantities for an asymp-
totically flat Schwarzschild black hole in 5D (red) and 4D
(blue), respectively. It is apparent from this plot that small
(compared to ‘) braneworld black holes behave like 5D
asymptotically flat Schwarzschild black holes and large
ones recover 4D behavior.
We have embedded the geometry of the spatial cross sec-

tions of the horizon intoH4, ds2¼ ‘2

z2
ðdz2þdr2þr2d�2

ð2ÞÞ,
as a surface of revolution rðzÞ such that the induced metric
on this surface is that of the horizon. To compare black
holes of different sizes we have fixed the maximum extent
of the horizon into the bulk to be at z ¼ 1 so that the brane is
located at a z ¼ zmin which depends on the size of the black
hole. Figure 2 depicts the embeddings of the horizon of
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FIG. 1 (color online). Area of the black hole as a function of
the radius of the horizon on the brane (black dots) and the same
quantity for an asymptotically flat Schwarzschild black hole in
5D (red line) and in 4D (blue line). Note the log scale of both
axes.
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FIG. 2 (color online). Embedding of the spatial cross sections
of the horizon into H4 (red). The black curve corresponds to the
embedding of the horizon of the AdS5-CFT4 solution of
Ref. [20], with a 4D Schwarzschild as the conformal boundary
metric.
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braneworld black holes of different sizes (red), together
with the embedding of the AdS5-CFT4 solution of
Ref. [20]. This gives a beautiful graphical confirmation of
the analysis given in the first part of this Letter. For large
black holes, where zmin ! 0, we see the horizon tends to
that of the AdS5-CFT4 solution, the perturbation from it
getting smaller as the cutoff zmin is removed.

We can provide evidence of dynamical stability for our
solution by computing the spectrum of our linearized
Euclidean Einstein-DeTurck equation about our solutions.
We note that this linear operator must be computed anyway
as part of the Newton method. For transverse traceless
perturbations about an Einstein solution, it coincides with
the spectrum of the Lichnerowicz operator restricted to
static axisymmetric modes [23]. We find that for all our
solutions there is a single negative mode, which for small
R4=‘ tends to the usual negative mode of 5D asymptoti-
cally flat Schwarzschild black hole. Small solutions are
close to 5D Schwarzschild and should be stable. The
absence of any zero modes and hence new negative modes
as one moves to larger radius solutions indicates we should
expect no (axisymmetric) dynamical instabilities.

As the black hole becomes larger, the induced geometry
on the brane tends to the 4D asymptotically flat
Schwarzschild solution. We may verify this by computing
the induced Einstein tensor on the brane. In Fig. 3, we plot
the dimensionless quantity R4

4G


‘�2 against the proper

radial distance from the horizon along the brane, �, in the
combination �=R4. The other components of G�

� give the

same behavior, and we see that the solutions become Ricci
flat with corrections going as Oð‘2=R2

4Þ, i.e., Oð�2Þ. With

these scalings we see the curves for large radius solutions
limit to a fixed curve, which appears to be precisely pre-
dicted by the stress tensor of the AdS5-CFT4 solution of
Ref. [20]. This explicitly confirms the prediction (7).

Finally, we comment on the possibility that our solutions
are in fact Ricci solitons. We have performed convergence

tests which indicate that the solutions indeed have � ¼
	A	A ! 0 in the continuum limit. As shown in Fig. 4 for
black holes with R4=‘ ¼ Oð1Þ, our 40� 40 pseudospectral
code gives a maximum value of �, denoted by �max, such
that �max < 10�8, which is already very small. It is also
worth noting that, for a fixed spatial resolution,�max grows
as the black hole becomes very large or very small, which
is expected since we have to resolve widely separated
length scales, namely, the horizon radius on the brane,
and the AdS length.
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