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The roles of quantum correlations, entanglement, discord, and dissonance needed for performing

unambiguous quantum state discrimination assisted by an auxiliary system are studied. In general, this

procedure for conclusive recognition between two nonorthogonal states relies on the availability of

entanglement and discord. However, we find that there exist special cases for which the procedure can be

successfully achieved without entanglement. In particular, we show that the optimal case for discrimi-

nating between two nonorthogonal states prepared with equal a priori probabilities does not require

entanglement but quantum dissonance only.
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It was believed that entanglement was the only kind
of quantum correlation contained in a bipartite quantum
system needed to carry out quantum information tasks.
However, it has been found that in some cases, determin-
istic quantum computation can be done in the absence of
entanglement [1]. Specifically, the correlations of sepa-
rable mixed states are a key ingredient for the speedup [2].
Additionally, it has been realized that protocols such as
quantum nonlocality and quantum search can be realizable
even with separable states [3,4]. Thus, entanglement does
not account for all possible quantum correlations contained
in a bipartite state. In spite of this, entanglement is the only
quantum correlation for pure states; recently it has been
recognized that this is not generally true for mixed states.
Ollivier and Zurek [5] introduced the quantum discord
which captures the nonclassical correlations, including
but not limited to entanglement. Thus entanglement and
discord are fundamental resources that allow us to perform
some quantum information processes with or without
classical counterparts.

Discord is attracting interest for studying separable
states exhibiting quantum correlations other than entangle-
ment [6–8], and their evolutions under decoherent mecha-
nisms [9–11]. In general, discord has to be obtained
numerically; however, for certain classes of mixed states
it is even possible to calculate it analytically [12,13].
Discord can be interpreted as a distance measure between
the studied mixed state � and its closest classical one ��.

Similarly, entanglement is the distance from � to the
closest separable state �� [14]. In a unified view of quan-

tum and classical correlations, quantum dissonance as a
distance measure between �� and its closest classical state

���
was introduced. In other words, the dissonance is a

quantum correlation with excluded entanglement [14]. The
role of quantum correlations in carrying out quantum
information protocols is an issue deserving fundamental
interest in light of these recent findings.

On the other hand, unambiguous discrimination among
linearly independent nonorthogonal quantum states is a
problem of fundamental interest [15–19]. Two nonorthog-
onal states require a three-dimensional Hilbert space for
implementing an optimal procedure of unambiguous state
discrimination [20]. When the states are codified strictly in
a two-dimensional Hilbert space, like a spin-1=2 particle,
the process for unambiguous discrimination has to be
assisted by an ancillary system in order to increase the
dimension of the Hilbert space [20]. Naively thinking,
entanglement would be the main ingredient for performing
the assisted state discrimination protocol [16]. However,
considering the above discussion, the question is, what
kind of correlations, entanglement, quantum discord,
or dissonance, are behind a successful discrimination
outcome?
Consider that a qubit is randomly prepared in one of the

two nonorthogonal states jcþi or jc�i with a priori prob-
abilities pþ and p� ¼ 1� pþ, respectively [16,21]. Let us
assume that the system can be coupled to an auxiliary qubit
A by a joint unitary transformation U such that

Ujcþijkia ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�þj2

q
jþij0ia þ �þj0ij1ia; (1a)

Ujc�ijkia ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j��j2

q
j�ij0ia þ ��j0ij1ia; (1b)

where jkia is a known initial state and fj0ia; j1iag is
an orthonormal basis of the auxiliary system. We
have also considered the orthonormal basis fj0i; j1ig
of the principal system and the orthonormal states

j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
[16].

The a priori fixed overlap hcþjc�i ¼ � ¼ j�jei� does
not change due to the joint unitary transformation; thus,
from (1) we see that �þ and �� probability amplitudes
satisfy the constraint � ¼ ��þ��, i.e., j��j ¼ j�j=j�þj
and �� � �þ ¼ �, with �� the phases of ��, and j�j �
j�þj � 1. Thus, the �þ amplitude defines the joint unitary
transformation which allows us to couple the quantum
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system of interest with the auxiliary one. We must consider
that in principle the relative phase � could be managed by
properly choosing the axes on the Bloch sphere. As we will
see, one convenient choice would be � ¼ 0. In this manner,
after applying the unitary U we have the mixed states

�j�þj ¼ p�Ujc�ijkihc�jhkjUy

þ pþUjcþijkihcþjhkjUy: (2)

This expression reveals in principle the presence of
quantum correlations between the system and the ancilla.

The process of discriminating unambiguously the pre-
pared initial states jcþi or jc�i is achieved by performing
a von Neumann measurement on the basis fj0ia; j1iag of
the ancillary system. The recognition is successful when
the ancilla is projected onto the state j0ia, since in this
case the system of interest collapses to the orthogonal
states jþi or j�i, depending on in which state, jcþi or
jc�i, it was initially prepared. Otherwise, the process fails
when the projection is onto j1ia. In this case, the initial
information disappears since the principal system collap-
ses into j0i, whatever the prepared state is.

The probability of success depends on the j�þj parame-
ter and is given by

Psðj�þjÞ ¼ 1� p�
j�j2
j�þj2

� pþj�þj2: (3)

Notice that Psðj�þjÞ is different from zero for any value of
j�þj. This means that this process always allows discrimi-
nating probabilistically and unambiguously the prepared
state. The optimal success probability is attained for

j�þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�=pþ4

p ffiffiffiffiffiffiffij�jp
, or j�þj ¼ j�j (pþ � p�), or

j�þj ¼ 1 (p� � pþ), and can be expressed as

Ps;max ¼
� 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp�

p j�j if 0 � j�j � ��

ð1� j�j2Þmaxfpþ; p�g if �� � j�j � 1;
(4)

where �� ¼ minf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ=p�

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�=pþ

p g. It is worth empha-
sizing that for j�j 2 ½0; j ��j½ both states could be recog-
nized and the probability is linear in j�j. For j�j 2 ½j ��j; 1½,
only one state can be discriminated, say, jcþi (jc�i) if
pþ � p� (pþ � p�) and the probability is quadratic in
j�j. In addition, we note that, as is known, the probability
is 1 for discriminating two orthogonal states (� ¼ 0),
whereas it is 0 when the two states are different only by
a phase factor (j�j ¼ 1).

We now answer our main question about what kind of
correlation allows performing the procedure of conclusive
nonorthogonal state discrimination when it is assisted by
an auxiliary system. We can ask first how much entangle-
ment between the systems is required. The amount of
entanglement contained in state (2) is given by the con-
currence [22]

Cð�j�þjÞ¼
�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j�þj2

q
j�þjpþ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�j2

j�þj2
s

j�j
j�þjp�

�
2�8j�j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j�þj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�j2

j�þj2
s

pþp�cos2
�

2

�
1=2

: (5)

We see that the concurrence depends on the phase � of the
overlap �, and it has its minimum value when � is zero.
The maximal concurrence holds for � ¼ ��, which cor-
responds just to the average concurrence of the decompo-
sition (2). This is illustrated in Fig. 1, where concurrence is
shown as a function of j�þj for different values of �, j�j,
and pþ. The solid line is the probability Psðj�þjÞ of
Eq. (3). It is clear from this picture that we cannot relate
the probability of success to a given amount of entangle-
ment, given that, for different values of � attaining differ-
ent values of entanglement, we have the same probability
of success. Even more, for � ¼ 0 there are some values of
j�þj for which the entanglement is zero. In particular we
note that there is one zero of entanglement around
the maximal probability of discrimination for pþ ¼ p�.
For pþ � p�, still we have successful discrimination with
zero entanglement but with nonoptimal probability. These
facts indicate that the discrimination processes do not
necessarily require entanglement.
We now consider the optimal process of state discrim-

ination (the maximum value of Ps), for which the
concurrence is obtained by evaluating (5) in j�þj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�=pþ4

p ffiffiffiffiffiffiffij�jp
, when j�j 2 ½0; ���, or in j�þj ¼ j�j

(j�þj ¼ 1) when j�j 2 ½ ��; 1� and pþ � p� (pþ � p�).
The concurrence Cð� ffiffiffiffiffiffiffiffiffiffiffi

p�=pþ
4
p ffiffiffiffiffi

j�j
p Þ is symmetric under the
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FIG. 1. Concurrence Cð�j�þjÞ as a function of j�þj for differ-
ent values of �: 0 (dashed lines), �=2 (dotted lines), � (dash-
dotted lines). The solid line is the probability Psðj�þjÞ. The
a priori probability pþ ¼ 1=2 for (a) and (b) and pþ ¼ 2=5
for (c) and (d). The corresponding overlaps j�j are (a) 1=3,
(b) 1=

ffiffiffi
3

p
, (c) 1=5, and (d) 1=

ffiffiffi
5

p
.
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exchange of pþ and p� and it takes the maximal value for
� ¼ � and the minimal one for � ¼ 0 (j�j 2 ½0; ��½),
whereas Cð�j�jÞ and Cð�1Þ do not depend on the phase �
(j�j 2 ½ ��; 1�). These features are illustrated in Figs. 2(a)
and 2(b) which show the concurrence as functions of j�j
for different values of � and pþ, i.e.,Cð� ffiffiffiffiffiffiffiffiffiffiffi

p�=pþ
4
p ffiffiffiffiffi

j�j
p Þ in the

interval j�j 2 ½0; ��� andCð�1Þ in the interval j�j 2 ½ ��; 1�.
In the optimal success probability the concurrence can
be zero only when pþ ¼ p� and � ¼ 0, as is illustrated
by the solid line in Fig. 2(b). In this case the concurrence is
given by

Cð� ffiffiffiffiffi
j�j

p Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�jð1� j�jÞ

q ��������sin
�

2

��������: (6)

It is clear from this expression that for � ¼ 0 there is
an optimal discrimination process without assistance of
entanglement with Ps ¼ 1� j�j.

In the general case Cð�j�þjÞ, expression (5) can exhibit

other zeros only when � ¼ 0. Specifically, we get that
concurrence (5) is zero when j�þj is a root of the 4th
degree polynomial in j�þj2, given by

j�þj8 � j�þj6 þ j�j2 p
2�

p2þ
j�þj2 � j�j4 p

2�
p2þ

¼ 0: (7)

A simple analytical solution of this equation is found for
equal a priori probabilities, namely,

j�þjC¼0 ¼
ffiffiffiffiffiffiffi
j�j

p
; 0 � j�j � 1; (8a)

j�þjC¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4j�j2p
2

s
; 0 � j�j � 1

2
: (8b)

Equation (8a) coincides with the case of optimal success
probability. In the solution (8b) the process of discrimina-
tion happens with constant probability Ps ¼ 1=2, as can be

seen by replacing (8b) in (3). Figure 3 shows the solutions
j�þj of Eq. (7) as a function of j�j for which the con-
currence is equal to zero. The solutions given in (8) are
shown in Fig. 3(a), where the solid line corresponds to the
(8a) solution, dashed line to the (8b) solution with plus
sign, and dotted line to (8b) solution with minus sign. The
case pþ � p� is illustrated in Figs. 3(b)–3(d) where also
three solutions appear in one interval and one solution in
another interval.
From the previous analysis we learned that the assisted

state discrimination process can be performed in the
absence of entanglement. In those cases it is important to
know which correlation is behind the state recognition. In
this respect, recent progress in the understanding of corre-
lations other than entanglement, such as quantum discord,
dissonance, or the classical one, can shed light to answer
this question. In the absence of entanglement in a mixed
state, quantum dissonance is present if discord is different
from zero [14]. If discord is zero, then only classical
correlations could be present [14]. As is well known,
quantum discord for a bipartite mixed �AB is given by [5]

D ¼ Ið�ABÞ � sup
fM̂xg

�
Sð�AÞ �

X
x

pxSð�xÞ
�
; (9)

where Ið�ABÞ ¼ Sð�AÞ þ Sð�BÞ � Sð�ABÞ is the quantum
mutual information and Sð�Þ is the von Neumann entropy.
The second term on the right-hand side of this expression
corresponds to the classical correlations. The supreme is

taken over all the measurement sets fM̂xg applied on sys-

tem B, px is the probability for outcomes M̂x, and �x is the

partial projection of �AB defined as �x ¼ TrB½ð1A �
M̂xÞ�AB�=px [5]. In this way, discord can be calculated
numerically. However, there are some cases where the
optimization problem was solved analytically [12,13].
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FIG. 2. Concurrence (a),(b) and discord (c),(d) as functions of
j�j for the case of optimal success probability of discriminating.
We consider different values of �: 0 (solid lines), �=3 (dashed
lines), �=2 (dotted lines), and � (dot-dashed lines) in the interval
j�j 2 ½0; ��� and solid line in the interval j�j 2 ½ ��; 1�. In (a),(c)
pþ ¼ 1=4 and in (b),(d) pþ ¼ 1=2.
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FIG. 3. j�þj solutions as functions of j�j for which the con-
currence is zero. In (a) pþ ¼ 1=2, (b) pþ ¼ 499=1000,
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In our study, we avoid the optimization problem by using
the Koashi-Winter identity [23] since the rank-two state (2)
can be written as a tripartite pure state:

j�i¼ ffiffiffiffiffiffiffi
pþ

p ðUj�þijkiaÞj0icþ ffiffiffiffiffiffiffi
p�

p ðUj��ijkiaÞj1ic; (10)

where we introduced a fictitious qubit C that, once traced,
led to the mixed state (2). Following the Koashi-Winter
[23] method, we have that JSA ¼ minfM̂xgf

P
xpxSð�xÞg ¼

Eð�SCÞ, where Eð�SCÞ is the entanglement of formation
between the system of interest and the fictitious qubit C.
Then, for calculating the optimization it is easier to calcu-

late Eð�SCÞ ¼ �xlog2x� ð1� xÞlog2ð1� xÞ with x ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

SC

q
Þ=2 and CSC being the concurrence of the

reduced �SC density matrix. Thus, the quantum discord is
given by

Dð�SAÞ ¼ Sð�AÞ � Sð�SAÞ þ Eð�SCÞ: (11)

This expression can be calculated more easily than (9). In
Fig. 2(c), the discord is shown for the optimal probability
of success when pþ ¼ 1=4, and can be compared qualita-
tively with the corresponding concurrence in Fig. 2(a).
We realize that discord also depends on the phase �
when � 2 ½0; ��½, whereas for � 2 ½ ��; 1� it does not de-
pend on �. For the case pþ ¼ 1=2, a similar dependence on
� is shown for discord in Fig. 2(d) as compared with
concurrence in Fig. 2(b). In general, we cannot say which
correlation is responsible for the state discrimination pro-
cess. However, we can say that in the optimal case with
equal a priori probabilities and � ¼ 0, the process is
assisted exclusively by dissonance. Similarly, for the roots
(8b), the nonoptimal case, the quantum dissonance can be
calculated by using Eq. (11). Figure 4 shows the quantum
dissonance as a function of j�þj for pþ ¼ p� and for
solutions in (8) with � ¼ 0. Notice that in all of these three
cases the quantum dissonance is responsible for success-
fully completing the procedure.

One can show that there are always solutions of Eq. (7),
some of them illustrated in Fig. 3, for which the process of
state discrimination is assisted only by dissonance and not
by entanglement.

In summary, we have shown that the protocol for un-
ambiguous discrimination of two nonorthogonal quantum
states, assisted by an auxiliary system, in general requires
quantum correlations in order to be implemented. The
particular case with optimal probability of success requires
both entanglement and discord except the case with equal
a priori probabilities, which is performed with zero entan-
glement and nonzero discord; i.e., only quantum disso-
nance is needed in this important case. We also found
other nonoptimal state discrimination procedures with dif-
ferent a priori probabilities which are assisted by quantum
dissonance only, since entanglement is absent and the
success probability is different from zero. In other words,

here we have found that an assisted unambiguous state
discrimination protocol always can be implemented suc-
cessfully aided only by quantum dissonance. Finally, we
would like to emphasize that the optimal assisted state
discrimination protocol with equal a priori probabilities
does not make use of an entangled state but of a non-
classical separable state in general. However, there are
two cases for which a classical state appears: (1) two
orthogonal states for which the probability of discrimina-
tion is one and (2) two parallel states for which the proba-
bility of discrimination is zero.
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