Volpe et al. Reply: In our Letter [\[1](#page-0-0)] we have studied a Brownian particle diffusing in front of a horizontal wall, whose movement $z(t)$ is described by a stochastic differential equation (SDE) with multiplicative noise. This SDE can be solved according to various rules parametrized by α , e.g., $\alpha = 0$ (Ito), 0.5 (Stratonovich), and 1, with different properties. This leads, in particular, to different predictions for the equilibrium distributions $p(z)$ and drift fields $d(z) = \langle \frac{\Delta z(z)}{\Delta t} \rangle$ depending on α [\[2\]](#page-0-1). We can compare such predictions with our measurements in order to determine the correct value of α (which turns out to be $\alpha = 1$). We remark that this is only possible because we have *a priori* knowledge of the force $F(z)$ acting on the particle, which, in particular, amounts to gravity (buoyancy) for $z > 280$ nm [Fig. [1\(a\)](#page-0-2)], a fact overlooked by Mannella and McClintock in their Comment [\[3](#page-0-3)] because not clearly stated in our Letter [\[1\]](#page-0-0). The details follow.

 $F(z)$ has two components: gravity (buoyancy) $-G_{\text{eff}} =$ -5.9 fN, which pushes the particle towards the wall and is constant for all z, and electrostatic interactions F_{el} = $Be^{-\kappa z}$, which prevent the particle from sticking to the wall and decays away from the wall with $\kappa^{-1} = 18$ nm. For $z > 280$ nm, in particular, there is only effective gravity, which is known without any fitting parameter [black line in Fig. $1(a)$]. We remark that these forces act on the particle independently of the presence of Brownian noise; i.e., they would also be present if the Brownian noise were switched off, for example, by decreasing the temperature of the system towards $T = 0$. The corresponding SDE is

$$
dz = -\frac{F(z)}{\gamma(z)}dt + \sqrt{2D(z)}dW,\tag{1}
$$

where $D(z)$ is the position-dependent diffusion coefficient $D(z)$, $\gamma(z)$ the particle friction coefficient, and W a Wiener process. The corresponding α -dependent $p(z)$ and $d(z)$ can be related to force measurements as explained in Refs. [\[1](#page-0-0)[,2](#page-0-1)]. In particular, the values of

$$
F_p(z) = \frac{k_B T}{p(z)} \frac{dp(z)}{dz}
$$
 (2)

(solid red line) and

$$
F_d(z) = \gamma(z)d(z) \tag{3}
$$

(dashed blue line), which have units of force, are shown for $\alpha = 0$ in Figs. [1\(b\)](#page-0-2) and [1\(c\),](#page-0-2) $\alpha = 0.5$ in Fig. [1\(d\)](#page-0-2) and [1\(e\)](#page-0-2), and for $\alpha = 1$ in Fig. 1(f) and [1\(g\)](#page-0-2). We remark that, even though $F_p(z)$ and $F_d(z)$ are clearly different, $F_d(z) - F_p(z)$ is independent from α , as correctly pointed out by Mannella and McClintock [\[3\]](#page-0-3).

In Ref. [\[1](#page-0-0)], we experimentally measured $F_p(z)$ (red squares) and $F_d(z)$ (blue circles) [Figs. [1\(b\)](#page-0-2)–[1\(e\)](#page-0-2)]; there is agreement with the solution of the SDE ([1](#page-0-4)) for $\alpha = 1$ [Figs. 1(f) and [1\(g\)\]](#page-0-2), while the cases of $\alpha = 0$ and 0.5

FIG. 1 (color online). (a) Force acting on the Brownian particle studied in Ref. [[1](#page-0-0)]; the black line highlights the region where only gravity (buoyancy) acts. (b)–(g) Expected $F_p(z)$ (solid red line) and $F_d(z)$ (dashed blue line) for $\alpha = 0, 0.5,$ and 1; the symbols represent the experimental measurement of $F_p(z)$ (red squares) and $F_d(z)$ (blue circles) (from Fig. 2 in Ref. [[1](#page-0-0)]).

show clear deviations [Figs. $1(b)-1(e)$]. This has the consequence that the force $F(z) = F_p(z)$ and $F(z) =$ $F_d(z) - \gamma(z) \frac{dD(z)}{dz}$, which is the main result of Refs. [\[1](#page-0-0)[,2\]](#page-0-1). Finally, we remark that for other systems, which are not coupled to a heat bath [\[4](#page-0-5)], the relations between $F(z)$, $F_p(z)$, and $F_d(z)$ may be different.

Giovanni Volpe,^{1,2} Laurent Helden,² Thomas Brettschneider, 2 Jan Wehr, 3 and Clemens Bechinger^{1,2} Max-Planck-Institut für Intelligente Systeme Heisenbergstraße 3, 70569 Stuttgart, Germany ²2. Physikalisches Institut Universität Stuttgart Pfaffenwaldring 57, 70550 Stuttgart, Germany ³Department of Mathematics University of Arizona Tucson, Arizona 85721-0089, USA

Received 8 July 2011; published 9 August 2011 DOI: [10.1103/PhysRevLett.107.078902](http://dx.doi.org/10.1103/PhysRevLett.107.078902) PACS numbers: $05.40 - a$, 07.10 .Pz

- [1] G. Volpe et al., Phys. Rev. Lett. **104**[, 170602 \(2010\).](http://dx.doi.org/10.1103/PhysRevLett.104.170602)
- [2] T. Brettschneider et al., Phys. Rev. E 83[, 041113 \(2011\).](http://dx.doi.org/10.1103/PhysRevE.83.041113)
- [3] R. Mannella and P.V.E. McClintock, preceding Comment, Phys. Rev. Lett. 107, 078901 (2011).
- [4] Some examples of such systems are given, e.g., in R. Kupferman, G. A. Pavliotis, and A. M. Stuart, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevE.70.036120) E 70[, 036120 \(2004\)](http://dx.doi.org/10.1103/PhysRevE.70.036120); P. Ao et al., [Complexity](http://dx.doi.org/10.1002/cplx.20171) 12, 19 [\(2007\)](http://dx.doi.org/10.1002/cplx.20171), and references therein.