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We study theoretically the shapes of a dividing epithelial monolayer of cells lying on top of an elastic

stroma. The negative tension created by cell division provokes a buckling instability at a finite wave vector

leading to the formation of periodic arrays of villi and crypts. The instability is similar to the buckling of a

metallic plate under compression. We use the results to rationalize the various structures of the intestinal

lining observed in vivo. Taking into account the coupling between cell division and local curvature, we

obtain different patterns of villi and crypts, which could explain the different morphologies of the small

intestine and the colon.
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An essential property of living tissues is a permanent
cell turnover due to division and death, which has impor-
tant effects on their mechanical response. Since cells often
grow and divide in a constrained environment, cellular
divisions and apoptosis (programed death) induce internal
stresses in tissues that influence deeply their architectures
and morphologies. Conversely, there is a mechanical
feedback on cellular growth, differentiation, and organ
development, which is nowadays an active area of
research [1–6].

The intestine is the body’s fastest renewing organ, and it
is therefore a particularly interesting example to consider.
It exhibits a variety of folded multicellular structures [7],
called villi, which play a crucial role in favoring the
exchange of nutrients. Although the development of the
intestine has been studied for various animals, the forma-
tion of villi and their structure has not yet been described
quantitatively [8]. From a physicist’s point of view, these
folded shapes in a periodic arrangement are strongly remi-
niscent of the patterns observed after the buckling of
metallic plates. Euler buckling is the instability leading
to the lateral deflection of an elastic beam or a surface
under load. A similar buckling instability is expected in
growing constrained systems [9] and has been invoked to
explain fingerprints [10] or the shapes of algae [11]. Of
particular interest is the recent report [12] that intestinal
structures can be reproduced in vitro with minimal physi-
ological environment, reinforcing the idea that mechanical
forces play a crucial role. Still, studies of cell renewal in
the intestine take villi shapes as a given phenomenological
curve [13]. We argue that it is in fact a consequence of cell
renewal itself.

We present here a theoretical model for the intestinal
structure based on the buckling instability of monolayered
epithelial cells. We show that a few minimal ingredients
are sufficient to capture many key features of the intestinal
architecture. This model reproduces the correct orders of

magnitude and the various patterns of folded structures
observed in vivo and gives insight into the physiological
distinction between the small intestine and colon.
The intestine is a relatively simple organ: It is covered

by a single layer of epithelial cells, which lay on top of the
thin and relatively stiff basement membrane. The tube is
surrounded by a soft connective tissue called the stroma.
We adopt here a three-layer model for the intestine,
sketched in Fig. 1.
The underlying stroma is considered as an elastic me-

dium of height H and Young’s modulus Es. In practice, the
thickness of this connective tissue can be considered as
infinite as it is larger than the typical wavelength of the
villi, � � 100 �m. The basement membrane is a thin
elastic sheet of height hb � 1 �m, with a bending modu-
lusKb and an elastic modulus Eb. The cell monolayer has a
thickness hc � 10 �m and an elastic modulus Ec.
Considering the cell density as a constant, its bending
modulus is Kc ¼ 1

9Ech
3
c, which is much larger than the

bending modulus of the basement membrane. The elastic-
ity of the cell monolayer is dominated by curvature and has
no stretching energy, since the cells respond to strain by
dividing or undergoing apoptosis over long time scales. We
also consider that the cell monolayer can glide on the

FIG. 1 (color online). Schematic description of an epithelial
monolayer on top of a basement membrane and an elastic
stroma. Crude estimates for the values of the parameters are
[28,29] hc ¼ 10 �m, hb ¼ 1 �m, Es ¼ 400 Pa, Ec ¼ 104 Pa,
and Eb ¼ 103 Pa.
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basement membrane and neglect the curvature of the in-
testinal tube, since its radius R � 2 cm is orders of mag-
nitude larger than all the relevant lengths.

We first give a simple argument based on energy con-
siderations which gives good insight into the mechanism of
the instability and allows us to estimate orders of magni-
tude. The buckling instability is driven by the cell layer.
When cells divide or die in a tissue, they exert stresses on
their environment. The characteristic pressure is the ho-
meostatic pressure Ph [4], which is exerted on its surround-
ings by the tissue in its steady state, i.e., when cell division
balances cell apoptosis. Since the intestinal epithelium is a
monolayer, the forces in the plane of the monolayer can
be described in terms of a negative surface tension ��
related to the homeostatic pressure by � ¼ Phhc. At
the lowest order, the elastic energy of an undulation
wðxÞ ¼ w0 cosðqxÞ of the cell monolayer reads

E ¼ Kc

2
w2

0q
4 � �

2
w2

0q
2 þ Es

3
w2

0q: (1)

Buckling occurs when the energy of a finite wave
vector undulation becomes negative, i.e., if the tension �

is larger than the critical value �c ¼ ð3KcE
2
sÞ1=3.

The wavelength of the unstable undulation at threshold

is then �c ¼ 2�ðKc

Es
Þ1=3 � 90 �m, close to the observed

in vivo wavelength (cf. Fig. 1). Remarkably, analytical
solutions obtained by minimizing the full elastic energy
above threshold, for an arbitrary pressure, retain the same
wavelength. The critical homeostatic pressure for villi
formation is typically Phc ¼ 1400 Pa �m. This value is
compatible with a homeostatic pressure in the range
103–104 Pa [14]. One can therefore expect the intestinal
lining to buckle under the pressure of the epithelium.

Surprisingly, animals of very different sizes (mice and
humans, for instance) have villi of equivalent dimensions.
This makes sense in our description where the size and
wavelength are dictated only by elastic considerations,
roughly constant in most mammals.

The previous energetic approach reproduces accurately
the undulations of the small intestine. The architecture of
the colon is visually very different [15]: There are no villi
but only crypts extending into the stroma.

This asymmetry prompted us to take into account the
nonuniform division rates along the villi. In vivo, cells
multiply in crypts from stem cells and undergo apoptosis
at the tip of the villi. They constantly flow from the crypts
to the villi, differentiating along the way.

We do not wish to enter here in the molecular details; we
will suppose that the nonuniform cell division can by
modeled by a growth rate depending on the curvature of
the cell monolayer, a hypothesis which has biological
grounds [13].

We use as a reference state the homeostatic state � ¼ �0

where the monolayer is flat and reaches a steady state so
that the cell division rate kd balances the cell apoptosis rate

ka, and then we expand our equations around this state.
Since the monolayer is polar, the apical and basal sides
are not equivalent, and a linear coupling with curvature is
allowed: kd � ka ¼ ��ð�� �0Þ þ �r2w. The coeffi-
cients � and � measure the dependence of the growth
rate on pressure and on curvature, respectively. They are
positive so that the growth rate decreases with pressure and
is larger in the crypts. Assuming that the cell density in the
monolayer is essentially constant, the cell conservation
equation reads

r � v ¼ kd � ka ¼ ��ð�� �0Þ þ �r2w: (2)

The pressure gradient in the monolayer is balanced by the

friction force with the basement membrane: � ~v ¼ � ~r�,
where � is a friction constant. These two equations give
the pressure in the cell monolayer as a function of the
undulation amplitude. For small friction coefficients � ¼
�0 � ��w, while for large friction coefficients � ¼ �0 þ
�
�r2w. It is difficult to obtain precise values of the parame-

ters � , �, and � and therefore to decide which regime is
more relevant. We have performed calculations in both
regimes and observed the same physical behavior. In the
following, we present calculations in the small friction
regime and define p ¼ �� .
For large values of �, the crypts and villi become

asymmetric. Villi are flattened, since the pressure is locally
lowered by apoptosis, and crypts are deepened, since the
pressure is locally increased by division (Fig. 2).
We start the analysis with � ¼ 0, in order to study the

morphology of the small intestine. A large � is then
included to explain specificities of the colon. Our main
result is a phase diagram, which presents the possible
in vivo morphologies of the intestinal tube.
For each point in the monolayer, we define a displace-

ment vector u ¼ ðu1; u2; wÞ, where w is the vertical
displacement of the interface and ðu1; u2Þ the lateral dis-
placement. We obtain the steady state shape and structure
of the villi from the force balance on the basement mem-
brane. We introduce in the force balance a local drag force
proportional to the local velocity of the membrane, which
controls the relaxation of the membrane toward its equi-
librium shape. The actual dissipative force is certainly
nonlocal and more complex, but, as we are interested
only in the steady state shape, this provides a convenient
way to relax, in our numerical solutions, the system toward
its steady state configuration. The basement membrane is
described by the classical Foppl–von Kármán [16] equa-
tion, which applies to thin rigid plates at moderate deflec-
tions. We consider for simplicity a membrane with a
vanishing Poisson modulus.
After rescaling all lengths by the thickness of the base-

ment membrane hb and time, the equations of motion of
the basement membrane are
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The various terms in Eq. (3) describe the friction force,
the curvature of the cell layer, the pressure exerted by the
cells, the stretching force of the basement membrane, and
the elastic force due to the stroma. The elastic force of the
stroma fel is proportional to the membrane displacement u.
Although we are not writing it for the sake of simplicity, we
also took into account the nonlinear dependence of the

curvature and tensions forces on ~rw, deriving them from
their full Hamiltonian. This does not change the qualitative
results but raises the issue of which nonlinear elasticity
should be chosen for the stroma. This is beyond the scope
of this Letter and should be addressed in future work. The
linear relation for fel is best written in Fourier space for a

wave vector k as fel ¼ 3 Es

Ec
ðhbhcÞ1=3Mu, where M is the

3� 3 matrix given by

ð2k2 � k2yÞ=k kxky=k 0

kxky=k ð2k2 � k2xÞ=k 0

0 0 2k

0
BB@

1
CCA: (4)

Whereas the buckled state is a simple sinelike function
in 1D, there are a variety of possible patterns in two
dimensions [17–19]. The three main morphologies are
finger-shaped villi, herringbone, or disorganized labyrinth
patterns. Following Ref. [20], we implemented a semi-
implicit integration method. All products are done in real
space, and all derivations in Fourier space, for maximal
efficiency. As shown in Fig. 3, we obtain a phase diagram
regrouping different equilibrium solutions for character-
istic physiological values of our parameters. The parameter
that we vary here is the buckling pressure exerted by the
monolayer, on the horizontal axis.
At low buckling pressure, finger shapes [shown in

Fig. 2(a) or, alternatively, as a 2D projection in Fig. 3(b)]
are stable, but for large stresses, it becomes difficult to
bend the membrane in all directions, and labyrinth or
herringbone structures are favored. This has been observed

FIG. 2 (color online). Numerical integration of the epithelial
surface wðx; yÞ under buckling. (a) Small intestine morphology,
showing developed villi, and (b) colon morphology, showing
only crypts. Units are micrometers.

FIG. 3 (color online). Phase diagram showing the various possible villi organizations. (a) is colonlike, whereas (b)–(d) are,
respectively, small-intestine-like finger-shaped herringbones, and labyrinth. The vertical axis is the coupling between cell division
and curvature, and the horizontal axis is the pressure exerted by the cell monolayer.

PRL 107, 078104 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

078104-3



experimentally for various inert thin film systems [21].
And indeed, villi are not always finger-shaped. They some-
times adopt complex folded patterns strikingly identical to
the ones that we predict [7,22].

To quantify the buckling pressure, a good proxy is the
height of villi, as indicated by Eq. (6). Although villi
wavelength is roughly constant throughout the intestine,
villi height is not. At the entrance of the intestine (near the
stomach), villi are very long, but their size decreases
gradually in more distal parts [22]. This leads us to con-
clude pressure decreases along the intestine, justifying the
relevance of our phase diagram.

As an example, Fig. 4 shows a transition between finger-
shaped and herringbone villi, in vivo [22], and from our
numerical integration when increasing the pressure along
the horizontal axis.

We therefore expect that labyrinthlike villi are more
likely to be found near the stomach, and that, in distal
parts, villi should be finger-shaped. Indeed, this is what
physiological studies show [7].

While we do not claim that this is the mechanism for the
formation of villi during embryogenesis, we argue that
when the system reaches a steady state, stresses must be
balanced, as described by our equations. In fact, several
experiments have shown that when increasing cell apopto-
sis for a short time [23], villi disappear and, in a matter of
days, regain their initial equilibrium state.

Seeing villi as a product of a buckling instability could
shed new light on intestinal pathologies. It should be noted
that, in our model, the elasticity of the basement membrane
plays a crucial role, since it stabilizes the amplitude of the
folds. In celiac diseases, atrophy of the villi correlates with
an increase of the apoptotic index but also with an increase
of the basement membrane thickness [24]. This translates
into a lower pressure, and a higher energetic cost to bend
the membrane, which can cause the abrupt disappearance
of villi. Conversely, if the basement membrane breaks,
which is a necessary event in colon cancer, this model
predicts uncontrolled outgrowth of the intestinal lining,
similar to polyp formation.

In addition to this equilibrium state, there are secondary
buckling events in crypts that result in a much higher crypt
to villi size ratio than described here [25].

The colon can be studied by considering a high asym-
metry in cell division rate due to curvature. The pressure is
then a function of the deformation w as � � �0 �

pwðx; y; tÞ. The epithelium renewal rate in the colon is
about twice slower than in the small intestine, suggesting
that the stresses exerted are also lower. Also relevant is the
fact that CDX1 and CDX2 levels are higher in the colon
[15] and that these proteins inhibit�-catenin, thus favoring
earlier differentiation. Physically, this would mean that
high stress regions are more localized in colonic crypts
than intestinal crypts and that the asymmetry parameter
p is higher in the colon.
Integration of these new equations for several values of

p demonstrate, as shown in Figs. 2, 3(a), and 3(b), a
transition between intestinal and colonic morphologies.
This transition is sharp, as observed in vivo at the
intestinal-colonic junction. This is consistent with the fol-
lowing analytical calculation made for small values of p in
a one-dimensional geometry.
In one dimension, the monolayer deformation amplitude

follows the equation

0 ¼ Kc�
2zþ �0�z� Ebhb

~r � ½ð ~rzÞ2 ~rz�
þ fel � pzð�zÞ: (5)

For small values of p, we expand the solution as a
sum of two cosine functions: hðxÞ ¼ h0 þ h1 cosðqxÞ þ
h2 cosð2qxÞ, with q ¼ Es

�c
, and identify the terms in

cosðqxÞ and cosð2qxÞ. The amplitudes are such that
h22 � h21 and ph2h1 � h31. Within this approximation,

the value of h1 is unchanged compared to the symmetric
p ¼ 0 case:

h21 ¼
2�3

c

E2
sEbhb

�
�0

�c

� 1

�
: (6)

The nonsymmetric term h2 is negative, in agreement with
what is expected: When subtracting cosð2xÞ to a larger
cosðxÞ term, the troughs are deepened and the crests
flattened.

h2 ¼ � 3ph21
8ð3�0 � �cÞ< 0: (7)

Our numerical solutions predict that intestinal villi are
organized in a square lattice (as can be proven analytically
by energy considerations, following Ref. [19]), whereas
colonic crypts are organized on an hexagonal lattice as
seen in Fig. 3 (in agreement with weak crystallization
theories [26]). Although the system is noisy, this is strongly
hinted in vivo by the fact that transverse cuts of the small
intestine do show square-shaped villi, whereas colonic
crypts are round and have a higher number of neighbors.
This simple buckling model predicts a full phase dia-

gram explaining most of the structures observed in the
small and large intestines. This suggests a deep connection
between tissue architecture and the stresses produced by
the dividing cells. Intestinal shape and renewal are at least
partially controlled by a mechanical balance, which is
disrupted in the case of intestinal diseases. Since it has

FIG. 4 (color online). Transition between finger and herring-
bone villi, comparing a transverse cut (left) and our simulation
(right). Pressure increases along the horizontal axis from left to
right.

PRL 107, 078104 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

078104-4



been proven that an excess of mechanical pressure could,
in itself, induce colonic cancer [27], a detailed understand-
ing of this balance is of great interest for cancer research.
This buckling formalism could also be applied to other
morphogenetic events and used to model the formation of
hollow tubes, for example, in neurulation.
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