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We show that the intelligence of a swarm of cooperative units (birds) emerges at criticality, as an effect

of the joint action of frequent organizational collapses and of spatial correlation as extended as the flock

size. The organizational collapses make the birds become independent of one another, thereby allowing

the flock to follow the direction of the lookout birds. Long-range correlation violates the principle of

locality, making the lookout birds transmit information on either danger or resources with a time delay

determined by the time distance between two consecutive collapses.
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In the recent few years, there has been intense activity to
explain why a swarm of birds behaves as a single individ-
ual [1,2]. How is it possible that when a predator comes,
the swarm changes direction to escape from danger? How
is it possible that a subset of a swarm becoming aware of
the right direction toward a resource [3] convinces the
whole flock to pursue that specific course? In which sense,
using a metaphor made popular by Couzin [4], can we
interpret the swarm as a cognitive mind?

The main purpose of this Letter is to prove that this form
of intelligence is the effect of the joint action of frequent
organizational collapses, allowing the single birds to re-
cover independence of the others, and of a correlation
length as extended as the flock size. Although the environ-
ment perceiving units are a small fraction of the total
number of units, they exert a determinant action on the
swarm during the short rearrangement phase after an or-
ganizational collapse, which makes each unit free to select
a new direction. This freewill condition allows the swarm
to select the new flying directions that are transmitted to all
the units by the few danger- or resource-perceiving birds,
thanks to the criticality-induced long-range correlation.
The connection between dynamic instability and informa-
tion transfer has been recently observed in locust nymphs
[3]. The results of this Letter confirm the importance of this
observation, establishing at the same time that the infor-
mation transfer is made possible by the nonlocal nature of
the criticality condition, with a time delay depending on
the time distance � between two consecutive organiza-
tional collapses. The correlation length between birds be-
comes as extended as the finite swarm size, thereby
allowing the lookout birds to transmit their flying direction
to the whole swarm. Thus, the mean value h�i, proportional
to the correlation length, remains finite.

To afford a convincing proof that the swarm’s intelli-
gence is determined by the joint action of organizational
collapses and criticality-induced nonlocality, we proceed
in two main steps. In the first step we use a model of bird
organization, referred to in this Letter as the bird model, to

illustrate the concept of temporal complexity. The second
step is based on a simpler model, where the relative posi-
tions of the birds are fixed and they have only to choose
between either flying to the right or the left.
We use the occurrence of organizational collapses to

define temporal complexity [5] as follows. Let us set the
origin of time at the moment of a failure occurrence, and let
us consider the probability that another failure occurs in the
small time interval ½�; �þ d��:

dp ¼ c ð�Þd�: (1)

Temporal complexity [5] is established by examining the
asymptotic time limit of c ð�Þ, which is expected [6] to be
the same as that of

c ð�Þ ¼ ð�� 1Þ T��1

ð�þ TÞ� : (2)

Note that the parameter T is the minimal recovery time and
that Eq. (2) is a generic expression for a system in a critical
state. The mean time distance between two consecutive
collapses is given by

h�i ¼ T

ð�� 2Þ ; (3)

for �> 2. The ideal condition of temporal complexity
corresponds to �< 2, making h�i diverge, thereby gener-
ating the nonergodic condition [7]. There are reasons to
believe that this condition may be a general property of
physiological systems, playing an important role for the
transfer of information from one to another complex sys-
tem [8,9].
To prove that a flock of birds at criticality generates

temporal complexity, let us adopt the algorithm proposed
by Vicsek and co-workers [10]. This model gives the
prescription for each single bird to take a direction equal
to the average of its nearest neighbors’ orientations, inside
a given circle of interaction of radius r, with some uncer-
tainty represented by a white noise of intensity �. The
signature of cooperative behavior is given by the intensity
of the global speed, defined by

PRL 107, 078103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

0031-9007=11=107(7)=078103(4) 078103-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.078103


�aðtÞ ¼ 1

Nv0

��������

XN

k¼1

v0e
i�kðtÞ

��������
: (4)

�kðtÞ is the angle specifying the flight direction, N is the
number of birds, and � is the parameter that has to be tuned
to make the system critical.

To detect the occurrence of organizational collapses, we
monitor the alignment of the swarm looking for the ideal
condition of a vanishing �aðtÞ. Actually, we find that,
although �aðtÞ ¼ 0 never occurs, from time to time
�aðtÞ becomes smaller than a threshold that we arbitrarily
establish to signal the transition from the organized to the
nonorganized state. We make the assumption that crossing
this threshold marks the occurrence of an organizational
collapse establishing the swarm’s free will. In Fig. 1, we
plot the survival probability �ðtÞ � R1

t dt0c ðt0Þ, where
c ð�Þ is the distribution density of the time distances be-
tween two consecutive collapses. We see that at criticality
c ð�Þ is proportional to 1=��, with � close to 1.35.
The one-dimensional version of this model shows a

behavior qualitatively similar to that of the locusts of
Ref. [3], characterized by abrupt jumps from one to the
opposite flying direction. In this case a direction change
marks with no ambiguity the occurrence of an organiza-
tional collapse and proves that the reorganization time is
negligible compared to h�i. Furthermore, recovering � ¼
1:35 [see �ðtÞ of Fig. 3] suggests universality.

We note that, although at criticality the waiting time
distribution density tends to fit the theoretical definition of
temporal complexity of Eq. (2), at t� 10 000 in the case of
Fig. 1, the inverse power law is interrupted by a fast
exponential drop. This is a consequence of the swarm’s
size being finite. We find numerically that the exponential
truncation occurs at larger and larger times with increasing
the size of the swarm. In the specific case of Fig. 1, we find
that h�i � 104. The effective mean velocity of the swarm is
V � 0:004. The swarm is contained in a square of size

L ¼ 40. Thus, it takes the time T � 1� 104 for the swarm
to travel a distance of the order of its size. We see that
during this time the swarm undergoes at least one collapse.
The numerical calculations yield

h�1i
h�2i

� L1

L2

; (5)

where L1 and L2 indicate two different swarm sizes and
h�1i and h�2i the corresponding mean time distances be-
tween two consecutive organizational collapses. Note that
this is so because at criticality both correlation length and
h�i become very large, equal, and proportional to L, re-
spectively, thereby yielding Eq. (5).
Let us now make the second step. We note that the

criticality properties discussed earlier are shared by all
the cooperative models, for instance, the decision-making
(DM) model of Ref. [5]. Let us assume that each bird is a
node of a two-dimensional lattice. Let us assume that the
swarm is a square of size L with periodic boundary con-
ditions. Each bird has to make a choice between flying to
the right (1) or to the left (� 1). The decision rate is given
by the parameter g < 1. In the absence of cooperation, the
probability for a given node of making a transition from the
state j1i ¼ 1, to the state j2i ¼ �1, or vice versa, is g.
Each bird has four nearest neighbors. When cooperation is
switched on, p2!1 ¼ g expfK½Mð1Þ �Mð2Þ�=Mg and
p1!2 ¼ g expfK½Mð2Þ �Mð1Þ�=Mg, where M ¼ 4 and
Mð1Þ and Mð2Þ are the numbers of nearest neighbors in
the state j1i and j2i, respectively. Each node generates a
signal sðtÞ, with sðtÞ ¼ �1. In the absence of cooperation,
the time duration of either a positive or negative signal is
1=g. When K > 0 the mean time duration of a state be-
comes larger, and at criticality it starts increasing exponen-
tially [5].
This model makes it easy to study the effects of the

action of the danger- or resource-perceiving units. We

FIG. 1 (color online). Survival probability �ðtÞ as a function
of time. The occurrence of collapses is detected by using the
threshold of Fig. 2.

FIG. 2 (color online). Intensity of the global speed as a func-
tion of time for N ¼ 1600 birds for the value of noise �c ¼ 3:5
corresponding to the onset of phase transition in the two-
dimensional case.
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assume that the units of the small squares of size�L, in the
left bottom of the swarm, namely, �L2 units, are the
lookout birds. From time T on, we assign to them a regular
and simple form of motion, representing their response to
the environment, and we study the transmission of this
motion to the whole swarm via the nearest-neighbor inter-
action. The simple form of motion that we assign to the
lookout birds is based on dividing the time axis into
intervals of size �t where they fly either to the right or to
the left, and, for simplicity, we choose an alternate pre-
scription. The top left panel of Fig. 4 shows that when the
effort parameter K is smaller than the critical value, the
swarm is unable to follow the direction of the lookout
birds. For even smaller values of the cooperation effort,
the swarm does not even depart from its unperturbed
behavior. The top right panel of Fig. 4 shows that when
the cooperative effort is too intense, the swarm is not
flexible and does not succeed in synchronizing its behavior
with that of the lookout birds either. At criticality, instead
(see the bottom panel of Fig. 4), the whole swarm synchro-
nizes very well with the lookout birds.

To study this phenomenon from the information trans-
port point of view, we imagine that the motion of the
lookout birds is determined by a transmitter operator OT

and that the flying direction, either 1 or�1, assigned to the
lookout birds for each time interval �t, is 1 bit of infor-
mation. Operator OT transmits the sequence ftðnÞg, with
n ¼ 1; 2; . . . ; B� 1; B, where tðnÞ ¼ �1 and B is the total
number of bits to transmit. The receiver operator OR ob-
serves the signal produced by a node located at a very large
distance. The signal produced by the unit observed by OR

is erratic and not much different from the random behavior
of the units in isolation. However, as erratic as the single
units are, at criticality the fluctuations observed by OR

contain information on the global variable. The operator
OR has to record this signal and make a time average. This

time average has to be done according to a preliminary
agreement between the operator OT and the operator OR.
Thus, operator OR generates the sequence fbðnÞg, where
bðnÞ is the time average of the signal sðtÞ generated by the
node under observation from time tn�1 ¼ ðn� 1Þ�t to
time tn ¼ n�t. The transmission of the message begins
at time t1 ¼ T and ends at time tB ¼ B�t.
We see that at criticality (the bottom panel of Fig. 5) the

sign of the averaged signal corresponds exactly to the sign
of the transmitted message: a macroscopic signal reproduc-
ing perfectly the message of OT . This perfect transmission
condition is lost in both the subcritical and supercritical
conditions. In the case of Fig. 5, the Euclidean distance
between T and R is about 9, while the distance between
two units in direct contact is 1.
To prove that the flock’s response to the directions of the

lookout birds is determined by the criticality-induced non-
locality, we evaluate the global correlation of the swarm
according to the following procedure. For each bird of the
swarm we turn the sequence bðnÞ of Fig. 5 into the binary
sequence defined by

rðnÞ ¼ sgn½bðnÞ�: (6)

Then we determine the correlation with the message trans-
mitted by OT :

c ¼
P

n¼B
n¼0 rðnÞtðnÞ

B
; (7)

FIG. 3 (color online). Survival probability for the one-
dimensional bird model, at different values of the control pa-
rameter 1=�. The inset shows the time mean value of the global
field�að�Þ, and the dashed line has been calculated by fitting the
data with a function of the type � ¼ ½ð�c � �Þ=�c��.
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FIG. 4 (color online). Mean field of the DM model with 400
units corresponding to the nodes of a 20 by 20 regular two-
dimensional lattice with periodic boundary conditions. From
time t ¼ 0 to t ¼ 300 000, the global field is determined only
by the internal cooperation among the units. At time t ¼ T ¼
300 000, a small cluster of 25 units moves from the state ‘‘yes,’’
corresponding to the value of 1, to the state ‘‘no,’’ corresponding
to the value of �1, and so on. The black lines depict the motion
of the lookout birds, with the vertical lines marking the forced
abrupt transition from one to the other state. The top left, top
right, and bottom panel refer to a subcritical K ¼ 1:4, super-
critical K ¼ 1:9, and critical K ¼ 1:6 condition, respectively.
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where B is the total number of transmitted bits. We evalu-
ate this correlation for each node and determine its mean
value C, which is plotted in Fig. 6. We see that increasing
�t has the effect of improving the accuracy of information
transmission, which reaches its maximum at criticality,
with Kc � 1:61. When �t ¼ 20 000, the maximum of C
at criticality is Cmax � 1, a fact implying that correlation
has the maximum value for each node, regardless of its
distance from the lookout birds.

There is no direct connection between OT and OR. The
transmission of a message fromOT toOR is a consequence
of the criticality-induced long-range correlation, and the
time required to transmit information from OT to OR is
determined by the distance between two consecutive or-
ganizational collapses.

To confirm that the DM model fits Eq. (5), we study two
cases, 400 and 900 nodes. According to Eq. (5), we expect
that h�i900 ¼ 1:5h�i400. The adoption of the procedure
generating the inset of Fig. 3, we find that K900 ¼ 1:62
and K400 ¼ 1:61. The corresponding h�i values are
h�i900 � 430 and h�i400 � 300, in qualitative agreement
with Eq. (5). This indicates that h�i at criticality is only 1
order of magnitude greater than its value in the absence of
cooperation, 1=g ¼ 10, in the numerical calculations of
Figs. 4–6. At criticality, h�i begins increasing exponen-
tially, and for values of the control parameterK moderately
larger thanKc it can become of the order of�t, or larger. In
that condition the correlation between the lookout birds
and the swarm birds drops quickly to zero.

This Letter shows that the DM model shares the same
properties as the bird model and sheds light into the
criticality-induced information transport, thereby suggest-
ing a communication algorithm that, as shown by the
results of Fig. 5, may have important engineering

applications. This efficient information transmission is
closely connected to the intelligence emergence as a criti-
cality phenomenon [11]. It is expected that working along
these lines will settle the intriguing and long-standing issue
of whether the communication problem rests on traveling
waves or on the simultaneous action of the flock members
[1,12]. Although the time delay suggests the questionable
[12] action of information traveling waves, criticality-
induced nonlocality is the key ingredient of this process
of information transmission. Increasing the swarm size has
the effect of increasing the delay time, thereby making the
swarm less efficient.
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FIG. 6 (color online). Central role of criticality-induced corre-
lation. The two bell-shaped curves denote the correlation C and
must be referred to the left ordinate axis. The higher corresponds
to �t ¼ 20 000 and the lower to �t ¼ 10 000. The monotoni-
cally increasing curve represents h�i and must be referred to the
right ordinate axis. The two horizontal lines are guidelines
indicating the time level �t. A 30 by 30 lattice was used to
obtain these results.
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FIG. 5 (color online). This figure refers to the same condition
as that of Fig. 4. Here we plot the time averages that the operator
of R has to make to perceive the signal.
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