
Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium

Cheng-Cheng Liu, Wanxiang Feng, and Yugui Yao*

Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
(Received 18 April 2011; published 9 August 2011)

We investigate the spin-orbit opened energy gap and the band topology in recently synthesized silicene

as well as two-dimensional low-buckled honeycomb structures of germanium using first-principles

calculations. We demonstrate that silicene with topologically nontrivial electronic structures can realize

the quantum spin Hall effect (QSHE) by exploiting adiabatic continuity and the direct calculation of

the Z2 topological invariant. We predict that the QSHE can be observed in an experimentally accessible

low temperature regime in silicene with the spin-orbit band gap of 1.55 meV, much higher than that of

graphene. Furthermore, we find that the gap will increase to 2.9 meVunder certain pressure strain. Finally,

we also study germanium with a similar low-buckled stable structure, and predict that spin-orbit coupling

opens a band gap of 23.9 meV, much higher than the liquid nitrogen temperature.
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Recent years have witnessed great interest [1–6] in the
quantum spin Hall effect (QSHE), a new quantum state of
matter with a nontrivial topological property, due to its
scientific importance as a novel quantum state and the
technological applications in spintronics. This novel elec-
tronic state with time-reversal invariance is gapped in the
bulk and conducts charge and spin in gapless edge states
without dissipation at the sample boundaries. The exis-
tence of QSHE was first proposed by Kane and Mele in
graphene in which the spin-orbit coupling (SOC) opens a
band gap at the Dirac point [1]. Subsequent works, how-
ever, showed that the SOC is rather weak, which is in fact
a second order process for graphene, and the QSHE in
graphene can occur only at an unrealistically low tempera-
ture [7–9]. So far, there is only one proposal that is able
to demonstrate QSHE in a real system, which is in two-
dimensional HgTe-CdTe semiconductor quantum wells
[3,4] in spite of some theoretic suggestions [5,6].

Nevertheless, HgTe quantum wells have serious limita-
tions such as toxicity, difficulty in processing, and incom-
patibility with current silicon-based electronic technology.
As the counterpart of graphene [10] for silicon, silicene
recently synthesized has shown that a low-buckled two-
dimensional hexagonal structure corresponds to a stable
structure, and there is also evidence of a graphenelike
electronic signature in silicene nanoribbons experimentally
[11–13]. Therefore, almost every striking property of gra-
phene could be transferred to this innovative material with
the extra advantage of easily being incorporated into the
silicon-based microelectronics industry.

In this Letter we provide systematic investigations on
the spin-orbit gap in silicene and germanium with two-
dimensional honeycomb geometry by first-principles cal-
culation, and show that an appreciable gap can be opened
at the Dirac points due to spin-orbit coupling and the low-
buckled structure. We predict that QSHE can be observed

in an experimentally accessible temperature regime in both
systems. Further, we find the strain can tune gap size. Our
argument is based on adiabatic continuity of the band
structures of the stable low-buckled geometry to the topo-
logically nontrivial planar silicene with QSHE, then con-
firmed by direct calculation of the Z2 topological invariant.
The structure of silicene is shown in Fig. 1. We obtain

the low-buckled geometry of minimum energy and stabil-

ity with lattice constant a ¼ 3:86 �A and nearest neighbor

Si-Si distance d ¼ 2:28 �A through structural optimization
and calculations of phonon spectrum. The results agree
with the previous calculations [14,15]. Compared with
graphene, the larger Si-Si interatomic distance weakens

FIG. 1 (color online). The lattice geometry of low-buckled
silicene. (a), (b) The lattice geometry from the side view and
top view, respectively. Note that A sublattice (red or gray)
and B sublattice (yellow or light gray) are not coplanar.
(c) The first Brillouin zone of silicene and its points of high
symmetry. (d) The angle � is defined as being between the Si-Si
bond and the Z direction normal to the plane.
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the �-� overlaps, so it cannot maintain the planar structure
anymore. This results in a low-buckled structure with
sp3-like hybrid orbitals. In Fig. 1(d), one can define the
angle � between the Si-Si bond and the direction normal
to the plane. The sp2 (planar), low-buckled, and sp3

configurations correspond to � ¼ 90�, � ¼ 101:73�, and
� ¼ 109:47�, respectively.

To illustrate the band topology of the low-buckled sili-
cene, we begin with their graphene analog, planar silicene,
and follow its band structure under an adiabatic transfor-
mation during which the unstable planar honeycomb struc-
ture is gradually evolved into the low-buckled honeycomb
structure. Planar silicene with the same structure as gra-
phene should have similar properties. Furthermore, since
Si atoms have greater intrinsic spin-orbit coupling strength
than C atoms, it is natural to conceive that the quantum spin
Hall effect is more significant in planar silicene. According
to symmetry, the low energy effective Hamiltonian with
SOC in planar silicene in the vicinity of Dirac point K can
be described by

H½K�
eff � ���z vFðkx þ ikyÞ

vFðkx � ikyÞ ��z

� �
; (1)

where vF is the Fermi velocity of � electrons near the
Dirac points with the almost linear energy dispersion, and
�z is Pauli matrix. The effective SOC � for planar silicene
has the explicit form � � 2�2

0j��j=ð9V2
sp�Þ with �� being

the energy difference between the 3s and 3p orbitals and
�0 half the intrinsic spin-orbit coupling strength, respec-
tively [7]. The parameter Vsp� corresponds to the � bond

formed by the 3s and 3p orbits. The effective Hamiltonian
near Dirac point K� can be obtained by the time-reversal
operation on the one near K. The above equation results in

a spectrum Eð ~kÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvFkÞ2 þ �2
p

. Therefore, one can
estimate the energy gap, which is 2� at the Dirac points,
to be about the order of 0.1 meV by taking the values of the
corresponding parameters [16]. Notice that in planar sili-
cene (� ¼ 90�) � orbitals and � orbitals are coupled only
through the intrinsic SOC. So, the effective SOC is in
fact a second order process. However, with the deviation
(� > 90�) from the planar geometry, � orbitals and �
orbitals can also directly hybridize. Consequently, the
magnitude of the effective SOC depends on the angle �.
As can be expected with increasing the degree of deviation
from the planar structure, the effective SOC will be incre-
mental, and QSHE will be more significant.

The argument above is supported by our first-principles
calculations based on density-functional theory (DFT).
The relativistic electronic structure of silicene is obtained
self-consistently by using the projector augmented wave
(PAW) pseudopotential method implemented in the VASP

package [17]. The exchange-correlation potential is treated
by Perdew-Burke-Ernzerhof (PBE) potential [18].

We carry out detailed and systematic calculations of
the band structure in adiabatic evolution from the planar

honeycomb geometry to the low-buckled honeycomb
geometry. The evolution of the gap opened by SOC for
the � orbital at the Dirac point K from the planar honey-
comb geometry to the low-buckled honeycomb geometry
is shown in Fig. 2(a). Figures 2(b) and 2(d) show the band
structures of planar and low-buckled silicene, respectively,
with the corresponding structures in Fig. 2(a). The band
structures of planar and low-buckled geometry are slightly
different, except linear dispersion near the Fermi level
[14,19]; in consideration of that the gap induced by the
effective SOC increases and the degeneracies split at some
k points. The difference of both the band structures in
the vicinity of the � point and in the energy range from
�3 to �2 eV actually means that � orbital and � orbital
can directly hybridize only in low-buckled geometry. We
can find that the gap induced by SOC for � orbitals is
34.0 meV at the � point in both geometries. As is also
shown in the figure that the magnitude of the gap induced
by effective SOC for the � orbital at the K point in planar
geometry is 0.07 meV, which is in agreement with the

(b)

(d)
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(c)  G2/2

-G2/2
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FIG. 2 (color online). The adiabatic evolution of the gap,
calculated relativistic band structure, and the topological Z2

invariant of silicene. (a) The evolution of the gap opened by
SOC for the � orbital at the Dirac point K from the planar
honeycomb geometry to the low-buckled honeycomb geometry
with keeping the Si-Si bond length constant. The top and bottom
abscissas correspond to the difference of vertical height between
A sublattice and B sublattice and the � angle aforementioned,
respectively, during evolution. (b) and (d) are the relativistic
band structures with the corresponding geometries in (a). (b),(d)
Main panel: the relativistic band structure of planar silicene and
low-buckled silicene, respectively. Inset: zooming in the energy
dispersion near the K point and the gap induced by SOC. (c) The
n-field configuration for silicene. The calculated torus in
Brillouin zone is spanned by G1 and G2. Note that the two
reciprocal lattice vectors form an angle of 120�. The white and
black circles denote n ¼ 1 and �1, respectively, while the blank
denotes 0. The Z2 invariant is 1 obtained by summing the n field
over half of the torus.

PRL 107, 076802 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

076802-2



estimate obtained from the tight-binding model discussed
above. In the low-buckled structure, the magnitude of the
gap is 1.55 meV, which corresponds to 18 K. The top
coordinate in Fig. 2(a) denotes the altitude difference of
two nonequivalent Si atoms within a primitive cell in the
vertical direction. The figure indicates that the gap with the
magnitude of 0.07 meV in the planar structure has been
increasing to 1.55 meV in the low-buckled structure with
energy minimum and stability. Most importantly, the gap is
not closed. Therefore, the low-buckled silicene with energy
minimum and stability must share the same nontrivial
topological properties as the planar silicene. Conse-
quently, QSHE can be realized in the low-buckled silicene,
namely, the native geometry of silicene. The argument can
be confirmed by direct calculation of the Z2 topological
invariant.

One can interpret nonzero topological Z2 invariant as an
obstruction to make the wave functions smoothly defined
over half of the entire Brillouin zone under a certain gauge
with the time-reversal constraint [20–22]. The band topol-
ogy can be characterized by the Z2 invariant. Z2 ¼ 1
characterizes a nontrivial band topology while Z2 ¼ 0
means a trivial band topology. Here we follow the method
in Ref. [23] to directly perform the lattice computation of
the Z2 invariants from our first-principles method [24,25].
The n-field configuration for the low-buckled silicene is
shown in Fig. 2(c) from first-principles calculations. It
should be noted that different gauge choices result in
different n-field configurations; however, the sum of the
n field over half of the Brillouin zone is gauge invariant
module 2, namely Z2 topological invariant. As shown
in Fig. 2(c), low-buckled silicene has nontrivial band

topology with the topological invariant Z2 ¼ 1. There-
fore, QSHE can be realized in the low-buckled silicene,
that is the native geometry of silicene.
In what follows, we investigate the gap opened by SOC

at Dirac points related to QSHE and the Fermi velocity of
charge carriers vF near the Dirac points in a series of
silicene geometries under hydrostatic strain from the
first-principles method. We find that while the largest
pressure strain can reach �6% without destroying the
nontrivial topological properties of those systems, the
magnitude of the gap at Dirac points induced by SOC
can be up to 2.90 meV, which corresponds to 34 K. As
shown in Fig. 3, the magnitude of the gap at Dirac points
induced by SOC is incremental with the decrease of
hydrostatic strain �, which is defined as � ¼ ða-a0Þ=
a0 � 100%, with a0 and a being the lattice constant with-
out and with hydrostatic strain, respectively. In the pressure
strain range, the QSHE can be also realized in the system
and even more pronounced. The figure also indicates that
the greater the angle �, the greater the gap. In addition, we
evaluate the Fermi velocity of charge carriers vF near the
Dirac points under different hydrostatic strain and find that
the magnitude of the hydrostatic strain does not signifi-
cantly change the carrier Fermi velocity vF. The value is
slightly less than the typical value in graphene, say, 106 m=s
due to the larger Si-Si atomic distance.
Recently, several experiments on silicene have been

reported [11–13]. They have not only proven silicene adopt-
ing slightly buckled honeycomb geometry and possessing
the band dispersion with a behavior analogous to the Dirac
cones of graphene, but also synthesized a silicene sheet
through epitaxial growth. With the advancement in experi-
mental techniques, we expect that silicenewith high quality
will soon bemanufactured. The experimental data available
can be compared with our theoretical prediction, then.
Although germanium with two-dimensional honeycomb

geometry has not yet been synthesized in experiments, we
also conduct a detailed study on germanium with two-
dimensional honeycomb structure because of its similarity
to the other group IVA elements in the periodic table, as
well as its significant importance as semiconductor mate-
rial. After structural optimization and calculations of
phonon spectrum, the low-buckled geometry of minimum

energy and stability with lattice constant a ¼ 4:02 �A and

nearest neighbor Ge-Ge distance d ¼ 2:42 �A is obtained.
As shown in Figs. 4(a) and 4(b), Ge with low-buckled
honeycomb structure is insulator while Ge with planar
honeycomb structure is metallic. Figure 4(b) indicates
that the magnitude of the gap induced by effective SOC
for the � orbital at the K point in low-buckled geometry is
23.9 meV corresponding to 277 K which is much higher
than the liquid nitrogen temperature. The direct calculation
for topological Z2 invariant proves that Ge with low-
buckled honeycomb structure has nontrivial band topology.
Therefore, we predict that QSHE will be realized in native

FIG. 3 (color online). The gap induced by SOC and the Fermi
velocity of charge carriers vF near the Dirac points are calcu-
lated from the first-principles method under different hydrostatic
strain conditions. The black circles and red or gray diamonds
mark the gap and the Fermi velocity vF near the Dirac points
under different hydrostatic strain �. Inset: Energy of unit cell
versus different hydrostatic strain condition.
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germanium with two-dimensional low-buckled honey-
comb geometry and easily observed experimentally once
this novel material is synthesized.

In conclusion, we have shown both silicene and Ge with
two-dimensional honeycomb geometry have nontrivial to-
pological properties in their native structure. In addition,
the QSHE in silicene can be more significant under a range
of hydrostatic strain due to the increasing gap size. These
are confirmed by direct calculations of the topological Z2

invariants from first-principles methods. Silicene and Ge
with low-buckled honeycomb geometry have novel physi-
cal properties akin to graphene such as the linear energy
dispersion at the Fermi level. Besides, silicene and Ge with
low-buckled geometry and great SOC can be not only
synthesized and processed using mature semiconductor
techniques but also more easily integrated into the current
electronics industry. All of these make silicene and Gewith
low-buckled honeycomb geometry cornucopias of funda-
mental scientific interest and promising applications.
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