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We describe a superconducting device capable of producing laser light in the visible range at half of the

Josephson generation frequency with the optical phase of the light locked to the superconducting phase

difference. It consists of two single-level quantum dots embedded in a p-n semiconducting heterostructure

and surrounded by a cavity supporting a resonant optical mode. We study decoherence and spontaneous

switching in the device.
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Lasers and superconductors are both systems with mac-
roscopic quantum coherence. In lasers, photons form a
coherent state induced by stimulated emission of a driven
system into a cavity mode. The resulting visible coherent
light is characterized by an optical phase [1]. In super-
conductors, the ground state arising from spontaneous
symmetry breaking is also characterized by a phase [2].

Traditionally, lasers and superconductors are studied
separately. Recently [3], it has been realized that the super-
conducting (SC) phase difference and the optical phase
may interact in a single device that combines two super-
conductors and a semiconducting p-n junction. The latter
is a common system for light generation as the electron-
hole recombination produces photons of visible frequency
[4]. Combining semi- and superconductors within a nano-
structure has been a difficult technological problem that
attracted attention for a long time [5]. It has been solved by
using semiconductor nanowires [6] or quantum wells [7],
opening up the possibility to make combined devices.

The device in question has been termed a Josephson
light-emitting diode (LED) [Fig. 1(a)]. It employs a double
quantum dot (QD) in a p-n semiconductor nanowire con-
nected to SC leads [3]. The device, biased with a voltage V,
exhibits two types of photon emission: ‘‘blue’’ photons at
the Josephson frequency !J ¼ 2 eV=@ due to the recom-
bination of a Cooper pair from each side of the junction and
‘‘red’’ photons at about !J=2 due to electron-hole recom-
bination. It has been shown that the optical phase of the
Josephson generated blue photons is locked with the SC
phase difference. The resulting blue light could in principle
be enhanced by traditional optical methods, but its small
intensity makes this a challenging task.

In this Letter, we explore an alternative idea where the
far more intense red emission is enhanced in a resonant
cavity mode. We find lasing at half the Josephson fre-
quency and, thus, dub the device the ‘‘‘half-Josephson
laser’’ (HJL). In a common laser, lasing results from spon-
taneous symmetry breaking where all values of the optical
phase are equivalent. Drift between these values leads to a
finite decoherence time. In contrast, the optical phase of

the HJL is locked to the SC phase difference with only
two allowed values of the optical phase corresponding to
two opposite radiation amplitudes. This removes drift as a
source of decoherence and opens up the possibility to
manipulate the optical phase by changing the SC phase
difference. Instead, decoherence of the radiation in the HJL
results from switching between different QD states accom-
panied by the emission of a photon. We have explored
these processes and find that by order of magnitude the
resulting decoherence time is the same as the theoretical
limit for a common laser �dec ¼ n=�, with � the damping
rate and n the number of photons accumulated in the
resonant mode. A rather low � is required to achieve lasing
for a single Josephson LED, this condition being relaxed
with a large number of LEDs in a single cavity [8].
Setup and model.—The HJL is a Josephson LED em-

bedded in a single mode optical cavity with resonance
frequency !0 � 1

2!J [Fig. 1(b)]. The light emission from

the cavity is described by a damping rate �. The electronic
part consists of a biased p-n junction where each side of

FIG. 1 (color online). (a) The Josephson LED: electron
(above) and hole (below) QD levels are close to the chemical
potentials �e;h of the SC leads which differ by an energy eV.
Charge transfer is possible only either through electron-hole
recombination with the emission of a red photon at 1

2!J or

through a Cooper pair transfer with the emission of a blue
photon at !J. (b) The HJL is a Josephson LED embedded in
an optical cavity with a resonance frequency !0 � eV=@, i.e.,
close to the red emission frequency. The separately colored
regions in between the depleted areas represent the two QDs.
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the junction accommodates a QD connected to a SC lead.
The barriers separating the QDs from the leads are ar-
ranged such as to allow charge transfer only through
electron-hole recombination. Such QD junctions can be
realized with semiconducting nanowires [9].

The minimal model for the QDs involves a single orbital
for each QD. An orbital can house up to two particles
(including spin) yielding 16 possible states. The QD
Hamiltonian then reads [10]

Ĥ QD ¼ X

i¼e;h

½Ein̂i þUin̂iðn̂i � 1Þ� þUehn̂en̂h; (1)

where n̂e ¼
P

�ĉ
y
�ĉ� (n̂h ¼

P
�ĥ

y
�ĥ�) is the electron

(hole) number operator and ĉ� (ĥ�) is the annihilation
operator for an electron (hole) with spin �. The energies
Ee;h are measured with respect to chemical potentials �e;h

of the corresponding leads that differ by an energy eV ¼
�e ��h; here,Ue;h > 0 is the on-site charging energy and
Ueh < 0 the Coulomb attraction between electrons and
holes. For concreteness, we assume that the hole level
houses a heavy hole with Jz ¼ � 3

2 @, where z is the nano-

wire axis [4,11]. Such levels are commonly used in optical
experiments with QDs [12]. Our qualitative results do not
depend on this particular choice.

Because of the proximity of the SC leads, Cooper
pairs can coherently tunnel between the SC leads and the
QDs introducing mixing between unoccupied and doubly
occupied QD states. These processes can be compactly

described by an additional term ĤSC¼ ~��
eĉ"ĉ#þ ~�hĥ"ĥ#þ

H:c: in the Hamiltonian; here, the induced pair potentials
~�e;h have reduced magnitudes in comparison with the gaps

�e;h of the SC leads, but they retain the same phases �e;h.

Owing to gauge invariance, the physical quantities depend
only on SC phase difference � � �e ��h. The

Hamiltonian is valid under the conditions j~�e;hj; Ee;h; Ue;h;
Ueh & j�j. We note further that this Hamiltonian along
with the electron-hole recombination conserves parity
(even or odd) of the total number of particles on the QDs.
Even-odd transitions require creation of quasiparticle ex-
citations in the SC leads and occur with a relatively slow
rate estimated below.

Interaction between the resonant mode and QDs is de-

scribed by Ĥint ¼ �E � d̂, E being the electric field of the

mode at the QD position and d̂ the dipole moment of the
optical transition between the conduction and the valence
band. We assume a linear polarized mode, choose the x
axis in the direction of the polarization, and notice that for

heavy holes d̂x / ðx̂e�ieVt=@ þ H:c:Þ with x̂�ðĥ#ĉ" þ ĥ"ĉ#Þ.
The time dependence of the dipole moment is due to the
applied voltage. It is convenient to implement a rotating-
wave approximation transferring the time-dependent factor

to the photon creation (annihilation) operator b̂y (b̂).
Thereby, the photon-dependent part of the Hamiltonian
reads

Ĥ ph ¼ @!b̂yb̂þGðb̂yx̂þ b̂x̂yÞ (2)

with ! being the frequency detuning, ! ¼ !0 � eV=@,
j!j � 1

2!J. We see that x̂ plays the role of a driving force

that excites the oscillations in the mode. We note that all
Hamiltonians considered conserve spin.
Semiclassics.—The present model is a rather complex

case of nonequilibrium dissipative quantum mechanics.
However, since we envisage a large number of photons in
the mode, we employ a semiclassical approximation re-

placing b̂ � hb̂i � �=G. The Hamiltonian HQD þHSC þ
Hph can then be diagonalized to obtain the spectrum Emð�Þ
and corresponding eigenstates jmi. The dipole strength
xmð�Þ � hmjx̂jmi depends on both the radiation field �
and the QD state jmi. Since the dipole strength in turn
determines the evolution of the radiation field via the
evolution equation

_� ¼ �
�
i!þ �

2

�
�� i

G2

@
xmð�Þ; xm ¼ @Em

@�� ; (3)

we have to solve the system self-consistently [1]. The
radiation field can build up as long as the energy gain
rate 2@!0ðG2=@ÞIm½xmð�Þ=�� due to the nanowire is
greater than the energy loss rate @!0�. With increasing �
the energy gain saturates until a stationary state of radia-
tion (SSR) with _� ¼ 0 is reached at a certain radiation
amplitude �s.
In conventional lasers, the driving is due to a population

inversion that originates from dissipative transitions in an
open system. For the HJL, the SC drive is not dissipative by
itself: Only the emission of photons from the cavity is a
dissipative process. The driving originates from coherent
mixing of discrete quantum states due to the proximity of
the QD to the SC leads without any population inversion.
Thus, the driving mechanism of the HJL is very different
from that of a conventional laser. This is why the informa-
tion about the SC phase difference is preserved in the
process of driving. The energy gain, including its sign,
depends on the difference between � and the phase of �.
Owing to this, the phase of �s of the SSR is locked to the
SC phase difference. The SSRs of the HJL come in pairs
��s which is very different from a conventional laser
where only the magnitude j�sj (photon number) is fixed.
We give in Ref. [8] analytical solutions to Eq. (3) for a toy
two-level model.
Scales.—Let us estimate the scales involved that are

expected to yield lasing. To simplify, we assume all char-
acteristics of the QD spectrum to be of the same energy

scale E which is of the order E ’ j~�e;hj � eV. This as-

sures optimal mixing of the QD states by superconductiv-
ity. In a lasing state, the radiation amplitude should
noticeably contribute to the energies of the QD states.
This requires j�j ’ E. Assuming ! ’ �, we estimate

from Eq. (3) that this takes place at G ’ ffiffiffiffiffiffiffiffiffi
@�E

p
. We will

assume that G is always chosen to be of this scale. The
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number of photons is then estimated as n ’ j�j2=G2 ’
E=@�. The semiclassical approximation is thus justified
provided � is sufficiently small: � � E=@.

Lasing.—Despite the model being minimal, it contains
ten parameters that affect the existence and characteristics
of the SSRs. To find these characteristics, we need to
evaluate the dipole moment in a given state at given �
and can do it separately for the states of odd and even parity
since they are not mixed by interactions. Additionally, the
spin conservation splits the eight odd states into two
equivalent groups of four corresponding to total spin � 1

2 .

For the even states, only one of the four possible j1e1hi
states, ðĥy# ĉy" þ ĥy" ĉ

y
# Þj0i, couples to the field. Hence, we

need only to consider five of the eight even states as the
other three are dark.

With this, we demonstrate lasing as a proof of concept
by finding SSRs in the even states for QD parameters
within the above estimated scales, �Ee ¼ Eh ¼ 1

2Ue ¼
1
2Uh ¼ �Ueh ¼ �h � E and �e ¼ 1:5E, for wide regions

in the space of detuning! and couplingG; see Fig. 2. Note
that each eigenstate jmi has a different dipole strength xm
such that the lasing threshold Gc [Fig. 2(a)] and the radia-
tion amplitudes of the SSRs �s [Figs. 2(c) and 2(d)] depend
on m. Figure 2(b) shows the number of photons upon
crossing the lasing threshold for the state j2i. In agreement

with the estimations, n reaches the maximum ’ E=@� at

G ’ ffiffiffiffiffiffiffiffiffi
@�E

p
. We stress that the optical phase of the radiation

amplitude in an SSR is not arbitrary but locked to the SC
phase difference [Fig. 2(c)].
Switching.—In the above discussion, we have assumed

the QD to stay in a certain eigenstate jmi. In fact, it does
not: The finite spectral width of the mode enables switch-
ing between the eigenstates. As shown below, the switch-
ing events occur on a much longer time scale ��1

SW than that

of the relaxation of � towards its stationary value ��1. This
separation of time scales allows us to consider the switch-
ing dynamics separately from the dynamics of the radiation
amplitude.
Each switching event is accompanied by the emission of

a photon with a frequency mismatch compensating the
difference of energies between initial and final eigenstates,
@!k ¼ Ef � Ei. For switchings not altering the parity of

the eigenstate, the rates �SW can be evaluated by using
Fermi’s golden rule that contains the effective density of
photon states �=@!2

k (the tail of a Lorentzian-shaped emis-

sion line of the resonant mode) and the square of the matrix

element, jhmfjĤphjmiij2, with jmiðfÞi denoting the initial

(final) state. Thereby, the switching rate can be estimated
as �SW ’ �G2=E2 ’ �=n � �. The switching events are
thus rare, and the device stays in one of the SSRs between
the events.
Switchings altering parity are even rarer as they require

the excitation of a quasiparticle above the SC energy gap
j�e;hj. The larger detuning of the off-resonant photon!k ’
j�e;hj=@ and an additional small factor j~�e;h=�e;hj result in
a parametrically smaller rate �e-o ’ j~�j�G2=j�j3 � �SW

[3]. Such processes do not conserve spin, thus enabling
switchings between dark and emitting states.
It is important to realize that, since the SSRs for different

eigenstates have different values of �m
s , � does not jump to

the new stationary value upon a switching. Rather, the

amplitude will evolve to �
mf
s within a time scale ’ ��1,

according to Eq. (3). For the same reason, a switching
event always involves different eigenstates rather than
different SSRs at the same eigenstate. The latter would
require large fluctuations of � that are suppressed expo-
nentially. Figure 3 shows a sketch of the radiation intensity
as a function of time. In contrast to common lasers, the HJL
intensity fluctuations are large at time scales of ��1

SW.

Decoherence.—The intrinsic mechanism of decoher-
ence in common lasers is a drift of the optical phase. For
the HJL, this mechanism does not work since the ampli-
tudes of the SSRs are locked to the SC phase difference.
This renders switching the most important source of deco-
herence in the HJL. Indeed, after switching from a lasing to
a nonlasing SSR, the radiation extinguishes quickly and its
phase is forgotten. Even if the next switching brings the
system to a lasing eigenstate, the radiation will evolve from
the initial � ¼ 0 to any of the two possible ��m

s , with
equal probability. Since decoherence is due to switching,

FIG. 2 (color online). SSRs in the even states for QD parame-
ters given in the text. The five eigenstates are labeled with
numbers. (a) Lasing thresholds Gc for three eigenstates. At the
line with the number m, the energy gain at � ¼ 0 for the state
jmi exactly equals the energy loss. (b) Number of photons n for
eigenstate j2i versus the coupling constant G for !=� ¼ �0:1
[dotted line in (a)] above the lasing threshold at G ¼ Gc �
0:5

ffiffiffiffiffiffiffiffiffi
@�E

p
. Plots (c) and (d) illustrate the radiation amplitudes

�m
s (marked with circles) for SSRs corresponding to the different

eigenstates of the QD. The parameter choice is given by the cross
in (a) where only the states j2i and j3i are lasing. (c) Nonzero �m

s

come in pairs with opposite sign. Changing the SC phase
difference will rotate the �m

s with respect to the origin of the
plot. (d) Eigenenergies versus � (at Im� ¼ 0). The �m

s are
different for each jmi.
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the relevant time scale is given by �dec ’ ��1
SW ’ n=�.

Despite the very different decoherence mechanism, this
estimation is the same as for the common laser [13].

Average power and current.—The intensity fluctuations
due to switching self-average at a time scale exceeding
��1
e-o. The averaged characteristics are expressed in terms

of the probabilities Pm
s to be in a SSR s that belongs to an

eigenstate jmi. Those are given by the stationary solution
to the master equation of the switching dynamics that is
composed of the switching rates [8]. In terms of these
probabilities, the average number of photons in the cavity
is given by �n ¼ P

m;sP
m
s j�m

s j2=G2. The average emission

power is proportional to the photon number: W ¼
1
2 @!J� �n. The same holds for current in the device: Since

the emission of each photon is accompanied by a charge
transfer, it is given by I ¼ e� �n ¼ W=V. An elaborated
example of the current or intensity dependences is pro-
vided in Ref. [8]. For the current-voltage characteristic, we
find a rather complex structure beside a peak with a mag-
nitude of the order eE=@ that is concentrated in a narrow
interval ’ @�=e of voltages in the vicinity eV ¼ @!0. In
this structure, two types of discontinuities are present:
(i) kinks marking the thresholds of lasing instability at
� ¼ 0 (second-order transitions) and (ii) jumps signaling
the appearance of a SSR with stationary radiation ampli-
tude �s far from � ¼ 0 (first-order transitions). We observe
a relatively high probability to remain in an SSR with a
large photon number. It is explained from the fact that
eigenstates at large � are close to eigenstates of x̂. This
suppresses off-diagonal dipole-matrix elements resulting
in a suppressed rate of transitions from this state.

Feasibility.—To show the feasibility of the HJL, we
present here the estimations with concrete numbers. The
SC gaps j�e;hj are typically ’ 1 meV, so we can choose the
QD energy scale E ’ 0:1 meV. To estimate the dipole

strength G ’ eajE0j, with jE0j ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!0=Vol

p
being the

quantum fluctuation of the electric field in the mode, we
assume the cavity volume Vol ’ ‘3 with the wavelength

‘ ¼ 2�c=!0 ’ 600 nm and take a ’ 5 �A for the atomic
distance scale. This gives the maximum G ’ 0:1 meV.
With these two values for E and G, the minimum damp-

ing rate required for lasing is � ’ G2=@E ’ 1011 Hz, cor-
responding to quality factorQ ’ 103, which is common for
optical cavities. However, in this situation the number of
photons n ’ 1. This can be enhanced by increasing Q and

simultaneous decreasing G so it remains ’ ffiffiffiffiffiffiffiffiffi
@�E

p
. For

photonic crystal cavities [14], quality factors Q ’ 106

[15] have been measured and Q ’ 108 [16] have been
theoretically predicted. This gives photon numbers
n ’ 103 and n ’ 105, respectively. The estimations of the
emitted power and current at the peak do not depend on the
choice of � and are given by W ’ 10 nW and I ’ 10 nA,
respectively. The requirements on � can be eased and n
enhanced by putting many Josephson LEDs in the same
cavity. Furthermore, this also increases the emission power
W and the current I [8].
In conclusion, we have demonstrated the feasibility of

generating coherent visible light at half the Josephson
frequency in a SC nanodevice. The workings of the device
resemble the spontaneous parametric down-conversion in
nonlinear optics [17] with the superconductors playing the
role of coherent optical input. The novel driving mecha-
nism results in locking between the optical phase and SC
phase difference. The decoherence of the emitted light
originates from the switchings between different quantum
states of the device.
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