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We use our latest dispersive analysis of �� scattering data and the very recent K‘4 experimental results

to obtain the mass, width, and couplings of the two lightest scalar-isoscalar resonances. These parameters

are defined from their associated poles in the complex plane. The analytic continuation to the complex

plane is made in a model-independent way by means of once- and twice-subtracted dispersion relations

for the partial waves, without any other theoretical assumption. We find the f0ð600Þ pole at ð457þ14�13Þ �
ið279þ11�7 Þ MeV and that of the f0ð980Þ at ð996� 7Þ � ið25þ10

�6 Þ MeV, whereas their respective couplings

to two pions are 3:59þ0:11
�0:13 and 2:3� 0:2 GeV.
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The f0ð600Þ or sigma and f0ð980Þ resonances are of
great interest in several fields of physics. First, the two-
pion exchange in the scalar-isoscalar channel, I ¼ 0,
J ¼ 0, where these resonances appear, plays a key role in
nuclear physics, where the nucleon-nucleon attractive in-
teraction has been long [1] modeled by the exchange of a
‘‘sigma’’ resonance. Second, this channel is also relevant
for the QCD non-Abelian nature, since it is where the
lightest glueball is expected to appear. However, the glue-
ball identification is complicated by its possible mixing
into different states, like the f0ð600Þ, f0ð980Þ, and heavier
f0 resonances, which may be �qq mesons, tetraquarks,
molecules, or most likely a mixture of them all. Actually,
most of the controversy around these resonances comes
from the identification of scalar multiplets—see the
Review of Particle Physics (PDG) ‘‘Note on Scalar
Mesons’’ [2]. Third, the f0ð600Þ, being the lightest
hadronic resonance with vacuum quantum numbers,
plays a relevant role in many models of QCD spontaneous
chiral symmetry breaking. Furthermore, this state is of
interest in order to understand why, despite being so light
and strongly coupled to pions, it plays such a small role, if
any, in the saturation [3] of the low energy constants of
chiral perturbation theory (ChPT). Moreover, the position
of this pole could be setting the limit of applicability of the
chiral expansion. Finally, this state is of interest for elec-
troweak physics due to its many similarities—but even
more by its many differences—with the Higgs mechanism
now under scrutiny at the LHC.

Still, the properties of these resonances are the subject of
an intense debate. Let us recall that the � was listed in the
PDG as ‘‘not well established’’ until 1974, removed in
1976, and listed back in 1996. This was due to its width
being comparable to its mass, so that it barely propagates
and becomes a broad enhancement in the traditional, and
often contradictory,�� scattering analyses, extracted from

�N ! ��N experiments, using different models affected
by large systematic uncertainties. After 2000, these reso-
nances have been observed in decays of heavier mesons,
with well defined initial states and very different system-
atics from �� scattering, which led the PDG to consider,
in 2002, the f0ð600Þ as ‘‘well established’’ but keeping
until today a too conservative estimate of ‘‘mass:
400–1200 MeV’’ and ‘‘width: 600–1000 MeV.’’ For the
f0ð980Þ the situation is not much better, with an estimated
width ‘‘from 40 to 100 MeV.’’ However, not all the
uncertainty comes from experiment. The shape of these
resonances varies from process to process, and that is why
their masses and widths are quoted from their process-
independent pole positions, defined as

ffiffiffiffiffiffiffiffiffi

spole
p �M� i�=2.

But many models do not implement rigorous analytic
continuations and lead to incorrect determinations when
poles are deep in the complex plane or close to threshold
cuts, as happens with the f0ð600Þ and the f0ð980Þ, respec-
tively. Actually, this is one of the main causes of the huge
PDG uncertainties [2].
This model dependence can be avoided by using dis-

persive techniques, which follow from causality and cross-
ing and provide integral relations and a rigorous analytic
continuation of the amplitude in terms of its imaginary
part in the physical region, which can be obtained from
data. For example, dispersion relations combined with
ChPT determine the � pole at 440� i245 MeV [4] or
ð470� 50Þ � ið260� 25Þ MeV [5]. We focus here on
dispersive analyses, but other approaches yield similar
values [6,7]—see Table I and Ref. [14] for a review and
references.
Generically, the main difficulty lies in the calculation of

the left cut integral, which in Refs. [4,5] was just approxi-
mated. This left cut is due to crossing symmetry and can
be incorporated rigorously in a set of infinite coupled
equations written long ago by Roy [15] (see also [16] for
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applications and references). Recently, Roy equations have
been used to study low energy �� scattering [17], some-
times combined with ChPT [18], or also to test ChPT [19],
as well as to solve old data ambiguities [20]. Most recently
[8], the f0ð600Þ and f0ð980Þ poles were shown to lie within
the applicability region of Roy equations. Since data were
not reliable and to improve accuracy, Roy equations were
supplemented by ChPT predictions in Ref. [8], to yield
ffiffiffiffiffi

s�
p ¼ ð441þ16

�8 Þ � ið272þ9
�19:5Þ MeV, without using data

below 800 MeV on S and P waves. In that work, an
f0ð980Þ pole is also found at

ffiffiffi

s
p ¼ 1001� i14 MeV.

Note that, generically, �� scattering data around
900 MeV tend to produce a narrower f0ð980Þ [7,8,11]
than that seen in production processes or the PDG estimate.
In Table II, we list some other recent determinations of the
f0ð980Þ parameters.

Our aim in this work is to provide a precise and model-
independent simultaneous determination of the f0ð600Þ
and f0ð980Þ parameters from data alone, profiting from
two relevant results developed over the past half year: on
the one hand, the final analysis of K‘4 decays by the
NA48=2 Collaboration [26], which provides reliable and
precise �� scattering phases below the mass of the
kaon and, on the other hand, a set of Roy-like equations—
called Garcı́a-Martı́n–Kamiński–Peláez–Yndurain (GKPY)

equations and developed by our group [27]—which is
much more stringent in the resonant region than standard
Roy equations. The reason is that, in order to avoid diver-
gences, dispersion relations are weighted at low energy
with ‘‘subtractions,’’ but then amplitudes are determined
only up to a polynomial, whose coefficients depend on
threshold parameters. Since Roy equations have two sub-
tractions, they have an s polynomial term multiplied by the
isospin-2 scalar scattering length, whose large uncertainty
thus grows markedly in the f0ð600Þ and f0ð980Þ region. In
contrast, the GKPY equations have just one subtraction,
and their output, even without using ChPT predictions
at all, provides [27] a very precise description of ��
scattering data, discarding a long-standing conflict con-
cerning the inelasticity—and to a lesser extent the phase
shift—right above the f0ð980Þ region.
If we now use these GKPY dispersion relations to

continue analytically that amplitude, we find

ffiffiffiffiffi

s�
p ¼ ð457þ14�13Þ � ið279þ11�7 Þ MeV; (1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sf0ð980Þ
p ¼ ð996� 7Þ � ið25þ10

�6 Þ MeV: (2)

Let us describe next the whole approach in detail and
provide determinations for other quantities of interest,
like their couplings and the �ð770Þ parameters, as well as
other checks of our calculations from Roy equations.
Ours is what is traditionally called an ‘‘energy-

dependent’’ analysis of �� scattering and K‘4 decay data
[28,29]—in particular, the latest results fromNA48=2 [26].
Our procedure, described in a series of works [27,30], was
to obtain as a first step a simple set of unconstrained fits to
these data (UFD) for each partial wave separately up to
1420 MeV and Regge fits above that energy. Next we
obtained constrained fits to data (CFD) by varying the
UFD parameters in order to satisfy within uncertainties
two crossing sum rules, a complete set of forward disper-
sion relations as well as Roy and GKPY equations, while
simultaneously describing the data. The details for all CFD
waves can be found in Ref. [27], but since we are now

interested in the scalar-isoscalar partial wave tð0Þ0 , we show

in Fig. 1 the resulting �ð0Þ
0 phase shift. It should be noticed

that the CFD result is indistinguishable to the eye from the
UFD, except in the 900–1000 MeV region, which we also
show in detail and is essential for the determination of the
f0ð980Þ parameters. Note that both the UFD and CFD
describe the data in that region, but the GKPY dispersion
relations require the CFD phase to lie somewhat higher
than the UFD one. This is relevant since it yields a
wider f0ð980Þ, correcting the above-mentioned tendency to
obtain a too narrow f0ð980Þ from unconstrained fits to ��
scattering data alone. In the inner top panel, we show the
good description of the latest NA48=2 data on K‘4 decays,
which are responsible for the small uncertainties in our
input parametrization and constrain our subtraction

constants. As seen in Fig. 1, the inelasticity �ð0Þ
0 shows a

TABLE II. Recent determinations of f0ð980Þ parameters. For
Ref. [21] our estimate covers the six models considered there.
The last three poles come from scattering matrices and the rest
from production experiments.

Reference
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sf0ð980Þ
p

(MeV) jgf0��j (GeV)
[22] ð978� 12Þ � ið28� 15Þ 2:25� 0:20
[21] ð988� 10� 6Þ � ið27� 6� 5Þ 2:2� 0:2
[23] ð977� 5Þ � ið22� 2Þ 1:5� 0:2
[24] ð965� 10Þ � ið26� 11Þ 2:3� 0:2
[11] ð986� 3Þ � ið11� 4Þ 1:1� 0:2
[12] ð981� 34Þ � ið18� 11Þ 1:17� 0:26
[25] 999� i21 1.88

TABLE I. Other recent determinations of the � pole and
coupling, using analyticity. Results come from Roy equations
and ChPT [8], conformal fits to K‘4 decays and averaged ��
data around 800–900 MeV with only statistical [9] or also
systematic [10] uncertainties, the chiral unitary approach [11]
(only statistical error), a K matrix with a form factor shape [12],
and ChPTþ elastic dispersion relations (two loops [13]).

Reference
ffiffiffiffiffi

s�
p

(MeV) jg���j (GeV)
[8] ð441þ16

�8 Þ � ið272þ9
�12:5Þ 3:31þ0:35

�0:15

[9] ð474� 6Þ � ið254� 4Þ 3:58� 0:03
[10] ð463� 6þ31

�17Þ � ið254� 6þ33
�34Þ � � �

[11] ð443� 2Þ � ið216� 4Þ 2:97� 0:04
[12] ð452� 12Þ � ið260� 15Þ 2:65� 0:10
[13] (fit D) 453� i271 3.5
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‘‘dip’’ structure above 1 GeV required by the GKPY
equations [27], which disfavors the alternative ‘‘nondip’’
solution. Having this long-standing dip versus ‘‘no-dip’’
controversy [31] settled [27] is very relevant for a precise
f0ð980Þ determination.

The interest of this CFD parametrization is that, while
describing the data, it satisfies within uncertainties Roy and
GKPY relations up to their applicability range, namely,
1100 MeV, which includes the f0ð980Þ region. In addition,
the three forward dispersion relations are satisfied up to
1420 MeV. In Fig. 2, we show the fulfillment of the S0
wave Roy and GKPY equations and how, as explained
above, the uncertainty in the Roy equation is much larger

than for the GKPY equation in the resonance region. The
latter will allow us now to obtain a precise determination of
the f0ð600Þ and f0ð980Þ poles from data alone, i.e., without
using ChPT predictions.
Hence, we now feed our CFD parameterizations as input

for the GKPY and Roy equations, which provide a model-
independent analytic continuation to the complex plane,
and determine the position and residues of the second
Riemann sheet poles. It has been shown [8] that the
f0ð600Þ and f0ð980Þ poles lie well within the domain of
validity of Roy equations, given by the constraint that the t
values which are integrated to obtain the partial wave
representation at a given s should be contained within a
Lehmann-Martin ellipse. These are conditions on the ana-
lytic extension of the partial wave expansion, unrelated to
the number of subtractions in the dispersion relation, and
they equally apply to GKPY equations.
Thus, in Table III, we show the f0ð600Þ, f0ð980Þ, and

�ð770Þ poles resulting from the use of the CFD parametri-
zation inside Roy or GKPYequations. We consider that our
best results are those coming from GKPY equations, since
their uncertainties are smaller, although, of course, both
results are compatible.
Several remarks are in order. First, statistical uncertain-

ties are calculated by using a Monte Carlo Gaussian sam-
pling of the CFD parameters with 7000 samples distributed
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FIG. 2 (color online). Fulfillment of S0 wave Roy and GKPY
equations. The CFD parametrization is the input to both the Roy
and GKPY equations and is in remarkable agreement with their
output. Note how the uncertainty in the Roy equation is much
larger than that of the GKPY equation above roughly 500 MeV.

TABLE III. Poles and residues from Roy and GKPYequations.

ffiffiffiffiffiffiffiffiffi

spole
p

(MeV) jgj
f0ð600ÞRoy ð445� 25Þ � ið278þ22�18Þ 3:4� 0:5 GeV
f0ð980ÞRoy ð1003þ5

�27Þ � ið21þ10
�8 Þ 2:5þ0:2

�0:6 GeV

�ð770ÞRoy ð761þ4
�3Þ � ið71:7þ1:9

�2:3Þ 5:95þ0:12
�0:08

f0ð600ÞGKPY ð457þ14�13Þ � ið279þ11�7 Þ 3:59þ0:11
�0:13 GeV

f0ð980ÞGKPY ð996� 7Þ � ið25þ10
�6 Þ 2:3� 0:2 GeV

�ð770ÞGKPY ð763:7þ1:7
�1:5Þ � ið73:2þ1:0

�1:1Þ 6:01þ0:04
�0:07
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FIG. 1 (color online). S0 wave phase and inelasticity from
UFD and CFD. Dark bands cover the uncertainties. The data
come from Refs. [26,28].
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within 3 standard deviations. A systematic uncertainty due
to the different charged and neutral kaon masses is relevant
for the f0ð980Þ due to the existence of two �KK thresholds
separated by roughly 8 MeV, which we have treated as a
single �KK threshold at m̂K¼ðmK0 �mKþÞ=2’992MeV.
In order to estimate this systematic uncertainty, we have
refitted the UFD and CFD sets to the extreme cases of using
mK0 or mKþ instead of m̂K. As could be expected, the only
significant variation is for the f0ð980Þ—actually, only for
its half-width, which changes by �4:4 MeV for GKPY
equations and �5:6 MeV for Roy equations. The f0ð600Þ
changes by roughly 1 MeV, and the �ð770Þ barely notices
the change—less than 0.1 MeV. The effect on residues is
smaller than that of rounding the numbers. We have added
all these uncertainties in quadrature to the statistical ones.
Second, both the mass and width of the f0ð600Þ are com-
patible with those in Ref. [8] within 1 standard deviation.
Since we are not using ChPT and Ref. [8] did not use data
below 800 MeV, this is a remarkable check of the agree-
ment between ChPT and low energy data. Third, the
f0ð980Þ width is no longer so narrow—as happens in
typical �� scattering analyses—and we find � ¼
50þ20

�12 MeV, very compatible with results from production

processes. The mass overlaps within 1 standard deviation
with the PDG estimate. These results show that the effect
of the too narrow f0ð980Þ pole and the use of further
theoretical input like ChPT do not affect significantly the
resulting f0ð600Þ parameters.

In Table III, we also provide for each resonance its
coupling to two pions, defined from its pole residue as

g2 ¼ �16� lim
s!spole

ðs� spoleÞt‘ðsÞð2‘þ 1Þ=ð2pÞ2‘; (3)

where p2 ¼ s=4�m2
�. This residue is relevant for models

of the spectroscopic nature of these particles, particularly
for the f0ð600Þ [32], which are beyond the pure data
analysis scope of this work. Differences between previous
values of these couplings can be seen in Tables I and II.

In summary, using a recently developed dispersive
formalism, which is especially accurate in the resonance
region, we have been able to determine, in a model-
independent way, the f0ð600Þ and f0ð980Þ poles and
couplings from data with no further theoretical input. We
hope this work helps to clarify the somewhat controversial
situation regarding the parameters of these resonances.
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