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R. Auccaise,1 J. Maziero,2 L. C. Céleri,2 D. O. Soares-Pinto,3 E. R. deAzevedo,3 T. J. Bonagamba,3

R. S. Sarthour,4 I. S. Oliveira,4 and R.M. Serra2,*
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The quantification of quantum correlations (other than entanglement) usually entails labored numerical

optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to

have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct

experimental implementation of such a witness in a room temperature nuclear magnetic resonance

system. In our experiment the nature of correlations is revealed by performing only few local magne-

tization measurements. We also compared the witness results with those for the symmetric quantum

discord and we obtained a fairly good agreement.
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Nonlocality [1] and entanglement [2] of composed
systems are distinguishing features of the quantum
domain. Nevertheless, it is the possibility of locally broad-
casting [3] the state of a multiparticle system that broadly
defines the nature of its correlations. Remarkably, even
separable (nonentangled) states can be quantum correlated.
This kind of quantumness has an important role that
is not only related to fundamental physical aspects but
also concerning applications in quantum information
processing [4–7] and communication [3,8], thermodynam-
ics [9], quantum phase transitions [10], and biological
systems [11].

There are several unique aspects of quantum physics that
discern it from classical theories. One of particular rele-
vance to quantum information science is the impossibility
of creating a perfect copy of an unknown quantum state
[12]. This fact is employed in some quantum cryptographic
protocols [12] and, when extended to multipartite mixed
states [3], can be used to classify the aspects of correlations
in a composed system as classical or quantum. Let us
consider a bipartite system described by the density opera-
tor � and shared by parts a and b, with respective Hilbert
spaces H a and H b. The correlations in state � are said
to be locally broadcast if there are auxiliary systems
H a1 , H a2 , H b1 , H b2 and local operations (completely
positive, trace-preserving linear maps)�a: H a ! H a1 �
H a2 and �b: H b ! H b1 �H b2 such that �a1a2b1b2 ¼
�a ��bð�Þ with Ið�a1b1Þ ¼ Ið�a2b2Þ, where the quantum
mutual information—Ið�xyÞ ¼ Sð�xÞ þ Sð�yÞ � Sð�xyÞ,
Sð�Þ ¼ �trð�log2�Þ, and �x ¼ tryð�xyÞ—quantifies all

the correlations between the systems x and y. It turns out
that the correlations in a bipartite system can be locally
broadcast, and therefore have a classical nature, if and only
if the system’s state can be written as [3]

�cc ¼
XdimH a

i¼1

XdimH b

j¼1

pi;jj�iih�ij � j�jih�jj; (1)

where fj�iig and fj�jig are the orthonormal basis for the

subsystems state spaces H a and H b, respectively, and
fpi;jg is a probability distribution.

The class of states in Eq. (1) is contained in the set of
separable states—those states that can be generated via
local operations coordinated by communicating classical
bits—whose more general form is �sep ¼ P

ipi�
a
i � �b

i ,

where fpig is a probability distribution and �a
i (�

b
i ) is a

valid density operator for the subsystem aðbÞ. There are
separable states that cannot be cast in terms of orthogonal
local basis as those given in Eq. (1) and, therefore, present
nonclassical correlations. Underneath such states lies
a nonclassicality beyond the entanglement-separability
paradigm, which can be quantified by a departure between
classical and quantum versions of information theory. One
of the most popular measures for this kind of nonclassi-
cality is the quantum discord [13]. This quantifier has been
receiving a great deal of attention [6–8,14]. And it was
proposed as a figure of merit for the quantum advantage
in some computational models without or with little
entanglement [4,5].
In general, measures of nonclassical correlations involve

complete knowledge of the system’s state followed by
extremization procedures. In the laboratory, the first task
is implemented by quantum state tomographic methods
and the second one is carried out by additional numerical
manipulations. These procedures are demanding and
propagate the unavoidable experimental errors. This ob-
servation motivates the search for alternatives regarding
the classification of correlations in quantum states. Once
the nature of these correlations somehow determines what
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can and cannot be done with a given system, it is some-
times enough to know whether the correlations in that
system have a classical or a quantum nature. To accomplish
this last task it is convenient to have an observable witness
for the quantumness of correlations in the system.
However, as the state space of classical correlated systems
is not convex, a linear witness cannot be used in general,
and we have to take advantage of a nonlinear witness.
For a wide class of two-qubit systems, � ¼ ðIab þP

3
i¼1ðAi�

a
i � Ib þBiI

a � �b
i þ Ci�a

i � �b
i ÞÞ=4, a suffi-

cient condition for classicality of correlations is [15]

W� ¼ X3

i¼1

X4

j¼iþ1

jhOii�hOji�j ¼ 0; (2)

with Oi ¼ �a
i � �b

i for i ¼ 1, 2, 3 and O4 ¼
P

3
i¼1ðzi�a

i �
Ib þ wiI

a � �b
i Þ. The �aðbÞ

i is the ith component of the
Pauli operator in subsystem aðbÞ. Ai, Bi, zi, wi 2 <
with zi, wi randomly chosen and constrained such thatP

iz
2
i ¼

P
iw

2
i ¼ 1. For the so-called Bell-diagonal class

of states, �bd ¼ ðIab þP
3
i¼1 Ci�

a
i � �b

i Þ=4, W�bd
¼ 0 is

also a necessary condition for the absence of quantumness
in the correlations of the composite system (in this case
hO4i�bd

¼ 0 [15]). We can easily verify that the observ-

ables in Eq. (2) can be written in terms of one component
of the magnetization in one subsystem as hOii� ¼
h�a

1 � Ibi�i
, with �i ¼ Ua!b½Rnið�iÞ�Ry

nið�iÞ�Ua!b, where

Rnið�iÞ ¼ Ra
nið�iÞ � Rb

nið�iÞ, and RaðbÞ
ni ð�iÞ is a local rotation

by an angle �i around direction ni, with �1 ¼ 0, �2 ¼ �3 ¼
�=2, n2 ¼ y, and n3 ¼ z. Ua!b is the controlled-NOT gate
with the subsystem a as control.

We experimentally implemented the aforementioned
witness using the room temperature nuclear magnetic
resonance (NMR) system. In this scenario the qubits
(quantum bits) are encoded in nuclear spins and they are
manipulated by radio-frequency (rf) pulses. Unitary
operations are achieved by suitable choice of pulse ampli-
tudes, phases and durations, and the transverse magnet-
izations are obtained directly from the NMR signal [16].
The state of the two-qubit system is described by a density
matrix in the high temperature expansion (where entangle-
ment was ruled out), which takes the form � ¼ Iab=4þ
"��, with " ¼ @!L=4kBT � 10�5 as the ratio between the
magnetic and thermal energies and �� as the deviation
matrix [12,16]. A carbon-13 enriched chloroform (CHCl3)
solution at 25 �Cwas used in the experiments, with the two
qubits being encoded in the 1H and 13C spin-1=2 nuclei. In
order to experimentally demonstrate the witnessing proto-
col, two initial states were prepared by mapping them into
the deviation matrix using the general pulse sequence
scheme as shown in Fig. 1. The first state corresponds to
a quantum correlated Bell-diagonal state, which is ob-
tained from the thermal equilibrium by applying the pulse
sequence for producing the pseudopure state j11i, followed

by the pulses that implement a pseudo-EPR gate [17], see
Fig. 1 [18]. The second state is a classically correlated
Bell-diagonal state, obtained by applying a z-gradient
pulse after the aforementioned pulse sequence. The
witnessing of the thermal equilibrium state was also
performed as a reference. The experimental procedure
depicted in Fig. 1 was run 3 times for each initial state in
order to measure the magnetization h�a

1i�i
in the states �i

that leads to the two-point correlation functions h�a
i ��b

i i�.
So, the witness given in Eq. (2) is directly measured
(Fig. 2).
For the sake of comparison, we performed a full

quantum state tomography (QST) [19] of the initial states
(displayed in Fig. 3) and computed, from these data, the
symmetric quantum discord [6,20]—Qð�abÞ ¼ Ið�abÞ�
maxf�a

i ;�
a
j gIð�abÞ, where Ið�abÞ is the measurement-

induced mutual information —and its classical counterpart
[18] present in each state. The results are shown in Fig. 2.
The correlation quantifiers are computed from the experi-
mentally reconstructed deviation matrix in the leading
order in ", following the approach introduced in
Refs. [6,18]. Since the error in the witness expectation
value depends on many parameters (i.e., signal-to-noise
ratio and residual rf pulse sequence imperfections), we
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FIG. 1 (color online). (a) Schematic representation of the
operation sequence used to witness the nonclassical nature of
correlations. (b) Equivalent pulse sequence employed in our
experiment. The thicker filled bars represent �=2 pulses, the
thinner bars indicate �=4 pulses, and the grey bars indicate �=6
pulses with the phases as shown (negative pulse phases are
described by a bar over the symbol). The pulses represented as
unfilled dashed bars are modified to achieve the different rota-
tions necessary for the witness protocol. The dashed gradient
pulse is applied to obtain the classically correlated Bell-diagonal
state. The time periods 1

2J ,
3
2J , and

1
4J represent free evolutions

under the J coupling [18].
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used as a reference the thermal equilibrium state, which is
supposed to have no correlations at room temperature [6].
The witness measured for this state (W�T

) was about 0.05,

which is assumed to be the error margin for our experi-
ment. This introduces the bound shown in Fig. 2(b) for a
classically correlated (zero discord) state.

The witness measured for the three initial states is
displayed in Fig. 2(b). For the quantum correlated
Bell-diagonal state the witness (W�QC

) is found to be about

3.13 (far above the 0.05 bound), while for the classical

correlated Bell-diagonal state (W�CC
) it is about 0.04, i.e.,

within the classicality cutoff limit. In fact, the witness
works perfectly in the present setup, in the sense that it
easily sorts out quantum and classically correlated states.
Figure 2(c) also displays the quantum discord computed
from the experimentally reconstructed deviation matrices
using the approach introduced in Ref. [6]. As can be seen,
the result for the quantum discord is in agreement with the
witness, but the former is obtained after full QST and
numerical extremization procedures. Finally, we followed
the decoherence dynamics of the witness, by letting the
state �QC evolve freely during a time period tn, after this
decoherent evolution we performed the witness circuit, and
also a QST in order to compare the witness results with
those for correlation quantifiers. The noise spin environ-
ment causes loss of phase relations among the energy
eigenstates and exchange of energy between system and
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FIG. 2 (color online). (a) The 1H spectra (normalized by the
thermal equilibrium state spectrum) obtained after the witness
circuit execution (with rotations Rn1 , Rn2 , and Rn3 ), (b) witness

expectation value, (c) quantum discord (light blue columns) and
classical correlation (dark blue columns) measured in three
different initial states, �QC quantum correlated, �CC classically

correlated, and �T thermal equilibrium state. The dashed line
represents the experimental error bound for determination of
classically correlated (zero discord) states. The witness was
measured directly performing the circuit depicted in Fig. 1(a),
while the classical correlation and the symmetric quantum
discord was computed after full QST and numerical extremiza-
tion procedures. The correlations are displayed in units of
("2= ln2)bit [18].
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FIG. 3 (color online). Real (left) and imaginary (right) parts of
the deviation matrix elements reconstructed by QST for the two
initial prepared Bell-diagonal states: (a) �QC quantum correlated

(equivalent to C1 ¼ 2", C2 ¼ 2", and C3 ¼ �2"); (b) �CC clas-
sically correlated (equivalent to C1 ¼ 0, C2 ¼ 0, and C3 ¼ �4");
and also for (c) �T the thermal equilibrium state. The deviation
matrix elements are displayed in the usual computational
basis, where j0i and j1i represent the eigenstates of �z for
each qubit. The accuracy of prepared initial states can be
estimated by the normalized trace distance from the ideal ones,
	ð�ideal; �prep:Þ=" ¼ trj��ideal ���prep:j=2 � 0:1 (for both �QC

and �CC).
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environment, resulting in relaxation to a Gibbs ensemble.
In Fig. 4 we observe, that, in the course of the witness and
correlations evolution, the nonclassicality is diminished
until reaching an only classically correlated state. This
occurs near the 1H effective transversal relaxation time.
After such evolution period there are just reminiscent
classical correlations, which are also diminished resulting
in an uncorrelated state (the room temperature thermal
equilibrium state) after the spin-lattice relaxation time.
Again, we obtain a fairly good agreement between the
witness expectation values and the correlation quantifiers.

Summarizing, we presented a direct experimental
implementation of a witness for the quantumness of corre-
lations (other than entanglement) in a composite system.
Our work showed that it is possible to infer the nature of
the correlations in a bipartite system performing only few
local measurements over one of the subsystems (just three
measurements for both �QC and �CC). The witness pre-

sented in Eq. (2) was generalized to higher-dimensional
systems [21]. Therefore, the methods employed here can
also be easily applied for witnessing correlations in sys-
tems with dimensions higher than two. Our strategy pre-
cludes the demanding tomographic state reconstruction

and the numerical extremization methods included in
quantum correlation quantifiers (like quantum discord).
This method offers a versatile test bed for the nature of a
composite system that can be applied to other experimental
physical contexts. Moreover, in such a proof of principle,
we showed that nonclassical correlations can be present
even in highly mixed states as those in room temperature
magnetic resonance experiments.
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Note added.—After the submission of this Letter, a

related work has appeared [22], which employs other
methods to witness nonclassicality in an NMR system.
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