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We study the totally asymmetric simple exclusion process (TASEP) on complex networks, as a
paradigmatic model for transport subject to excluded volume interactions. Building on TASEP phenome-
nology on a single segment and borrowing ideas from random networks we investigate the effect of
connectivity on transport. In particular, we argue that the presence of disorder in the topology of vertices
crucially modifies the transport features of a network: irregular networks involve homogeneous segments
and have a bimodal distribution of edge densities, whereas regular networks are dominated by shocks
leading to a unimodal density distribution. The proposed numerical approach of solving for mean-field
transport on networks provides a general framework for studying TASEP on large networks, and is

expected to generalize to other transport processes.
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Delivering matter, energy, or information is a crucial
requirement for the functioning of any complex system,
ranging from the subcellular level of biological organisms
to globe-spanning man-made structures. Transport is often
organized along linelike pathways, which are in turn inter-
connected to form a network structure. In this perspective,
diffusion along networks has been studied extensively (see,
e.g., [1,2]). On the other hand, interactions play a funda-
mental role in the transport properties of many systems:
intracellular traffic of molecular motors on the cytoskele-
ton, pedestrian traffic on an ensemble of paths, and traffic
of information packages on the Internet are but a few
prominent examples where they lead to emergent collec-
tive phenomena, such as the appearance of jams.

The totally asymmetric simple exclusion process
(TASEP) is a paradigmatic model for one-dimensional
nonequilibrium transport subject to excluded volume in-
teractions: entities (““particles’) hop in a given direction,
but cannot occupy the same place [3]. TASEP was initially
introduced as a model for the kinetics of RNA polymer-
ization by ribosomes [4], but has since then received much
general interest, including from fundamental statistical
physics [5] and mathematics [6]. Numerous generaliza-
tions have been developed and applied to various areas,
such as the collective motion of motor proteins along
cytoskeletal filaments, vehicular traffic, etc. [7,8].

The collective behavior of exclusive transport on a net-
work, however, is not well understood at this stage. A body of
numerical work on TASEP-like models on networks, often
with complex details, exists in the context of traffic [8], but
less so on biological transport [9]. In terms of a paradigmatic
analysis based on TASEP, knowledge is still limited to either
simple topologies with at most two junctions [10,11], or
involves structureless links, e.g., in treelike networks [12].
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In this Letter we address the question of how the
topology of a network affects its TASEP transport char-
acteristics. Combining concepts from the area of complex
networks [1] with mean-field (MF) methods for TASEP
in the presence of junctions [11] we construct the global
behavior from that of single segments. This allows us to
rationalize many features of transport on large-scale
random networks in terms of theoretical arguments, and
furthermore leads to an algorithm to solve for MF
TASEP transport on a large-scale network. In particular,
we argue that irregularity, i.e., randomness in the vertex
degrees, strongly modifies the transport properties of a
network.

TASEP on a network.—We generalize the TASEP trans-
portrules [3,4] to a closed network of Ng directed segments
and Ny, vertices or junctions (see Fig. 1 for an illustration).
The segments consist of L sites along which particles
perform unidirectional random sequential hops subject to
hard-core on-site exclusion. At the junctions, particles
from k" incoming segments compete for occupying the
same vertex site v, while a particle can leave the junction
through one of k3" outgoing segments with equal proba-
bility. We write p,, for the average occupancy of a vertex v
with 0 = p, = 1. Particle number conservation in the
junction v reads

apu = Z J(U’,u) - Z ‘](v,v”)' (1)

at v'—v v'—v

The sums run over vertices v’ identifying incoming seg-
ments (v, v) and over v” for outgoing segments (v, v").

We briefly review the behavior of an isolated segment
linked to reservoirs, which we will build on. Its average
density p and current J are known to be homogeneous,
provided that segments are at least of moderate size, such
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that boundary effects remain small. Both are set by the
entry rate « and exit rate B [13]:

a=Ba<1/2 (LD)

a
p(a,ﬁ)={1—,3 B=a p<1/2 (HD) (2
12  aB=1/2 (MC)

with the current given by the current-density relation
](a’ B) = P(a’ B)(l - P(a’ B)) (3)

These three homogeneous phases are high density (HD),
low density (LD), and maximal current (MC), but for
a = B a nonhomogeneous shock phase (SP) arises, for
which LD and HD regions coexist on the same segment,
separated by a diffusing domain wall [14].

Mean-field theory and algorithm.—We extend the MF
analysis of [11] to large-scale networks to establish an
algorithm operating on the junction occupancies p, as
the only variables. Using MF [13] we neglect correlations
between neighboring sites. Then the entry (exit) rate « (3)
for a segment are effective rates, which depend only on the
occupancies of the adjacent vertices [11]:

a=py/k%" and B=1-p,. @)

The entry rate « is reduced according to the out-degree
kS, since particles on vertex v’ are distributed uniformly
over all outgoing edges. Assuming homogeneous seg-
ments, the effective rates in (2) and (3) can be substituted
into the continuity equation (1) to yield a closed set of Ny,
equations in the vertex occupancies:

apv _ pv’ pv
o Zj(kgvt’l_p v)‘gf(@’l‘p ) ©)

v'—v

where the sums run over all vertices v’ (v") which are
upstream (downstream) from v. The microscopic dynam-
ics lack particle-hole symmetry at the junctions, as is
reflected in Eq. (5) by the factor 1/k%" in the entry rate.
Our numerical MF algorithm iteratively finds the sta-
tionary solution to (5), thereby achieving considerable
computational advantage upon simulations since we only
need to update the Ny junction occupancies p,. In the
following we study transport on random networks as model
systems, complementing MF solutions of Egs. (5) by

FIG. 1 (color online).

An example of a Poissonian network
of M = 30 junctions with average connectivity ¢ = 1 and its
strongly connected component (bold). Every segment consists of
L sites on which particles undergo TASEP dynamics. At the
junctions the particles choose one of k%" outlets.

explicit simulations. Throughout, we exploit the fact that
macroscopic observables are self-averaging on these en-
sembles, as we have verified by analyzing different
network instances.

Bethe networks.—As an example of closed random
graphs with regular topology we consider the directed
Bethe network, drawn from the c-regular ensemble [15],
in which all vertices have identical connectivity ¢ = k" =
k°". The undirected Bethe network is well known in sta-
tistical mechanics, for example of spin models on graphs
[16]. Figure 2 shows the average segment current J as a
function of the overall density p. The standard result for
the current J(p) = p(1 — p) is recovered for ¢ = 1, where
the Bethe network reduces to a simple ring. As connectiv-
ity is increased, the overall current drops: this may appear
counterintuitive, but reflects the fact that vertices progres-
sively become bottlenecks and block the flow of particles.
More precisely, the current parabola is truncated at inter-
mediate densities by a plateaulike region, which widens
but lowers with connectivity c¢. To interpret these results,
we first give an explanation based on the phenomenology
of TASEP on a line. To this end, we point out that an
analytical solution to Egs. (5) can be given for the Bethe
network, since all Ny equations become identical due to
equal vertex connectivities. Therefore the solution requires
identical occupancies p,, for all vertices, from which seg-
ment currents and densities follow: all vertices, and there-
fore all segments, are equivalent. The transition from LD to
HD appears when the effective rates (4) are equal (o = ),
ie., at p, = ¢/(c + 1). Using Egs. (2)—(4) this leads to
distinct regimes for the current, yielding the truncated
parabola for the MF current-density relation:

for p*<p<1-—p*

J(p) = {ﬁ (©)

p(l — p) otherwise,

with LD phases (for p < p*), and HD phases (for
p>1—p"), where p* = 1/(c + 1). The plateau can be
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FIG. 2 (color online). The average segment current J as a
function of the overall density p on a Bethe network of degree
¢ superposing numerical mean-field predictions (closed sym-
bols), explicit simulations (Ny, = 80 junctions, L = 100 sites per
edge, open symbols), and a one-vertex analytical result Eq. (6)
(solid lines). The dashed lines delimit the phases for ¢ = 2.
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rationalized in terms of domain wall phenomenology [14],
recalling that &« = B indicates a SP with a diffusing do-
main wall between LD and HD zones which coexist on the
same segment. Since both zones have complementary
densities (p;p = 1 — pup), the current is not affected as
further particles are accommodated by growing the HD
zones at the expense of the LD zones [14,17].

These MF arguments capture the essential transport
features well, as is shown by the simulation data on
Fig. 2 (which remains true for triangular and square latti-
ces). Deviations from finite size simulations arise, how-
ever, on the current plateau (underestimated by MF) and
close to the transitions (where particle-hole asymmetry
increases with connectivity ¢). The numerical MF algo-
rithm does not provide a solution on the plateau, since the
assumption of homogeneous segments does not hold, but it
otherwise reproduces the theoretical results with great
precision. In summary, TASEP transport through a random
Bethe network may be understood in terms of a single
effective vertex, similar to the Ising model on a Bethe
lattice [16].

Poissonian networks.—In order to explore the effect of
irregularity, i.e., nonuniform vertex connectivity, we study
TASEP on the Poissonian (Erdos-Rényi) ensemble [15]:
any two vertices are connected with probability ¢/Ny,
yielding an average connectivity c. In order to avoid arti-
facts we consider transport on the strongly connected
component (SCC), in which each vertex can be reached
from all other vertices (see Fig. 1 for an example). We find
the SCC using an algorithm developed by Tarjan [18].

We first comment on the transport characteristic J(p) of
TASEP transport on Poisson networks. Figure 3 shows the
current J (averaged over all segments) as a function of
density p, for various connectivities c. The MF results are
in excellent agreement with simulations, thereby validating
the MF algorithm for irregular networks. The comparison
to Bethe networks with identical connectivities ¢ shows
that both networks carry the same current J(p) at very low
and very high densities. However, they behave very differ-
ently at intermediate densities. We observe that (i) currents
in Poissonian networks are significantly lower than in the
corresponding Bethe networks, (ii) even on the MF level,
the current J(p) no longer possesses particle-hole symme-
try (p < 1 — p), and (iii) the density at which the highest
current is achieved lies below half-filling, and progres-
sively reduces with connectivity c¢. The most striking dif-
ference, however, is the absence of a plateau in J(p) for the
Poissonian network. In contrast to Bethe networks, this
suggests that no SP segments involving domain walls arise
over any extended density range.

A finer understanding is obtained by analyzing how
transport is distributed across the individual segments of
the network. Consider first the distribution of segment
densities, shown for a connectivity ¢ = 10 and an overall
density p = 0.3, see Fig. 4(a). It is bimodal with peaks at
very high and very low densities. We are therefore dealing
with two subnetworks either in LD or HD phase, in
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FIG. 3 (color online). The current-density relation of the
strongly connected component of a Poissonian network of aver-
age connectivity ¢, Ny = 200 junctions. Simulations (markers,
segments of L = 100 sites) coincide with mean field results for a
given graph instance, resolving sample to sample fluctuations (of
the order of the symbols size). For comparison, the Bethe result
Eq. (6) is shown for the same ¢ (dotted lines).

contrast to the Bethe scenario where all segments are in a
SP at indermediate densities. Interestingly, the distribution
of the segment currents remains unimodal for Poisson
networks, Fig. 4(b), thus putting a similar load on all
segments.

The bimodal density distribution is also the key to
understanding how the network adjusts to higher overall
densities, by successively switching individual segments
from LD to HD. The inset in Fig. 4(a), obtained for
p = 0.7, shows that the typical densities of HD/LD seg-
ments are not significantly modified, whereas the propor-
tion of the HD network grows at the expense of its LD
counterpart as further particles are added. This is further
documented by the fraction nyp, (n;p) of edges in HD (LD)
phases, Fig. 4(c). For the Poissonian network npp is
roughly equal to the overall density p, thereby confirming
that the change from LD to HD in irregular networks
occurs progressively. This linear behavior of nyp is fur-
thermore very robust with respect to variations of average
connectivity ¢ (data not shown), implying that this picture
remains valid for all connectivities c.

Transport on highly connected networks.—Significant
insight into TASEP transport on general random networks
can be gained from analyzing the (MF) high-connectivity
limit. Ultimately all vertices constitute bottlenecks, taking
their occupancy close to saturation. Therefore we expand
the MF equations (5), posing p, =1—r,/c, with
r, ~ O(1) (see Supplemental Material [19])

k)k
Ws(p,) = Z@ /erv(r)B(ps —p+), (D
k

where pge,(k)k/c represents the degree distribution of
vertices when selecting a random segment. Wy (r) is the
distribution of r, which follows from the MF equations (5).
The high (low) density value p, (p_) are set by the vertex
saturation parameter r/c relative to the vertex degree k, as
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FIG. 4 (color online). Distribution of segment properties for
networks of connectivity ¢ = 10, comparing a Poisson network
(black) to a Bethe network (dashed red). Symbols show simula-
tion results, lines are mean-field predictions. (a) Distribution of
segment densities W(p,) for an overall density p = 0.3 (inset:
p = 0.7). Convergence of the density peak to a delta peak is very
slow in simulations due to collective fluctuations in the shock
phase, closed markers correspond to fourfold longer runs than
open ones. (b) Distribution of segment currents W(J,) for p =
0.3. (c) Fraction of segments in high (nyp) and low (n p) density
segments as a function of the overall density p.
_{p,=1/k if r/c>1/k, )
P pr=1—r/c ifr/c<l1/k

This shows that the bimodal distribution W in the segment
densities, with a fraction of segments in LD and a fraction
in HD, is a general feature for complex irregular networks.
This is particularly well illustrated in the strong connec-
tivity limit ¢ — oo, where W(p,) reduces to
Ws(py) = (1 = p)d(p,) + pd(1 = py). )

The weights of the 6 functions explain the linear behavior
of nyp, and our interpretation for Poissonian networks
hence generalizes to general irregular random networks.

Conclusions and outlook.—TASEP transport on closed
random networks has been shown to lead to very different
scenarios for regular and irregular topologies. Despite the
minimal character of TASEP, there may be direct implica-
tions: the presence of bimodality, which we have shown to
be robust, in biological tracer experiments would make our
findings directly useful for their interpretation. But our
results also raise interesting questions, such as the interplay
of biological transport and crowding, and their possible
regulation by the cytoskeletal network.

An important result of our study is that MF arguments
lead to very good predictions for the transport properties of
closed networks, and provide a framework for their inter-
pretation. Moreover, our numerical MF method gives
access to system sizes currently beyond the reach of simu-
lations. Generalizations of the approach to open random
networks and other network topologies seem straightfor-
ward. In addition, we may expect it to generalize to other
transport processes, as long as the behavior of individual
segments is known and boundary controlled, i.e., deter-
mined by the occupancy of its junctions.
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