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Binary-state dynamics (such as the susceptible-infected-susceptible (SIS) model of disease spread, or

Glauber spin dynamics) on random networks are accurately approximated using master equations.

Standard mean-field and pairwise theories are shown to result from seeking approximate solutions of

the master equations. Applications to the calculation of SIS epidemic thresholds and critical points of

nonequilibrium spin models are also demonstrated.
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Dynamical processes running on complex networks
are used to model a wide variety of phenomena [1,2].
Examples include spreading of diseases or opinions
through a population [3,4], neural activity in the brain
[5], and cascading bank defaults in a financial system [6].
The structure of the underlying network (e.g., its degree
distribution) may strongly influence the dynamics and
determine critical values of parameters (e.g., the critical
temperature of the Ising spin model [7], or the epidemic
threshold for disease-spread models [8,9]). Accurate pre-
diction of dynamics and critical points on networks of
arbitrary degree distribution thus remains an important
unsolved problem [1].

Mean-field theories (MF) are relatively simple to derive
and can be quite accurate for dynamics on well-connected
networks [10]. However, on sparse networks, or close to
critical points, MF theories perform poorly (see, for ex-
ample, Fig. 1 below). Pairwise approximations (PA), which
take into account the states of both nodes at the ends of a
network edge, improve on MF, but have been derived for
fewer dynamical processes (examples are [11,12]). In this
Letter we demonstrate a tractable master equation ap-
proach for binary-state dynamics, with accuracy exceeding
both MF and PA. We show that PA andMF theories may be
derived by seeking approximate solutions of the master
equations. We write down the explicit PA equations for the
general case, thus giving the first derivation of pairwise
approximations for a range of dynamical processes.
Finally, we use the master equations to calculate critical
points such as the epidemic threshold for the susceptible-
infected-susceptible (SIS) model (or contact process), and
the critical noise level in the majority-vote model [13].

We consider binary-state dynamics on static, undirected,
connected networks in the limit of infinite network size.
For convenience, we call the two possible states of a node
susceptible and infected, as is common in disease-spread
models. However, this approach also applies to other
binary-state dynamics, such as spin models [14], where
each node may be in the þ1 (spin-up ¼ infected) or the
�1 (spin-down ¼ susceptible) state. The networks
have degree distribution Pk and are generated by the

configuration model [2]. Dynamics are stochastic, and
are defined by infection and recovery probabilities which
depend on the degree k of a node, and on the current
number m of infected neighbors of the node. Thus Fk;mdt
is defined as the probability that a k-degree node that is
susceptible at time t, with m infected neighbors, changes
its state to infected by time tþ dt, where dt in an infini-
tesimally small time interval. Similarly, Rk;mdt is the

probability that a k-degree infected node with m infected
neighbor moves to the susceptible state within a time dt.
These general infection and recovery probabilities can
describe many dynamical processes of interest; see Table I
for some examples.
Approximate master equations for dynamics of this type

can be derived by generalizing the approach used in [18]
for SIS dynamics; see [19]. Let sk;mðtÞ [ik;mðtÞ] be the

fraction of k-degree nodes that are susceptible (infected)
at time t, and have m infected neighbors. Then the fraction
�kðtÞ of k-degree nodes that are infected at time t is given
by �kðtÞ ¼

P
k
m¼0 ik;m ¼ 1�P

k
m¼0 sk;m, and the fraction

of infected nodes in the whole network is found by sum-
ming over all k classes: �ðtÞ ¼ h�kðtÞi � P

kPk�kðtÞ.
The master equations for the evolution of sk;mðtÞ and

ik;mðtÞ are [19]
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FIG. 1 (color online). (a) Infected fraction �ðtÞ in the SIS
disease-spread model on 3-regular random graphs, with trans-
mission rate � ¼ 1 and recovery rate � ¼ 1:4. (b) Steady-state
fraction of infected nodes as a function of the nondimensional
recovery rate �=�. The arrow marks the epidemic threshold
predicted from the linearized master equations [top row of
Table II(a)].
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d

dt
sk;m¼�Fk;msk;mþRk;mik;m��sðk�mÞsk;m

þ�sðk�mþ1Þsk;m�1��smsk;m

þ�sðmþ1Þsk;mþ1; (1)

d

dt
ik;m¼�Rk;mik;mþFk;msk;m��iðk�mÞik;m

þ�iðk�mþ1Þik;m�1��imik;m

þ�iðmþ1Þik;mþ1; (2)

for each m in the range 0; . . . ; k, and for each k class in the
network. The first two terms on the right-hand side of
each equation represent transitions due to infection or recov-
ery of a k-degree node. The remaining four terms account
for infection or recovery of a neighbor. The rates �s, �s, �i,
and �i are approximated by tracking the number of edges
of each type. To calculate �s, for example, we count the
number of S-S edges (i.e., edges between two susceptible
nodes) in the network at time t, and then count the number
of edges which switch from being S-S edges to S-I
edges in the time interval dt; the probability �sdt is
given by taking the ratio of the latter to the former,
giving �s ¼ hPk

m¼0ðk�mÞFk;msk;mi=h
P

k
m¼0ðk�mÞsk;mi.

Similarly, we have �s ¼ hPk
m¼0ðk�mÞRk;mik;mi=

hPk
m¼0ðk�mÞik;mi, �i ¼ hPk

m¼0 mFk;msk;mi=
hPk

m¼0 msk;mi, and �i ¼ hPk
m¼0

mRk;mik;mi
hPk

m¼0
mik;mi ; see [19].

The master Eqs. (1) and (2), with the time-dependent
rates �s, �s, �i and �i (defined as nonlinear functions of
sk;m and ik;m), form a closed system of deterministic equa-

tions which can be solved numerically using standard
methods. Assuming a randomly-chosen fraction �ð0Þ of
nodes are initially infected, the initial conditions are
sk;mð0Þ ¼ ð1� �ð0ÞÞBk;mð�ð0ÞÞ, ik;mð0Þ ¼ �ð0ÞBk;mð�ð0ÞÞ,
where Bk;mðqÞ denotes the binomial factor

�
k
m

�
qmð1� qÞk�m:

Note that the evolution equations are completely pre-
scribed by the functions Fk;m and Rk;m, and so this method

can be applied to any stochastic dynamical process defined
by transition rates of this type. For the SIS model,
Eqs. (1) and (2) were derived in [18], but were not analyzed
as here.
Figure 1(a) shows the infected fraction �ðtÞ of nodes in

the SIS model run on a 3-regular random graph (i.e., a
Bethe lattice, with Pk ¼ �k;3). The master Eqs. (1) and (2)

clearly give a better approximation to the actual stochastic
dynamics than standard methods [here, the mean-field
theory of [3] and the pair-approximation method of
[11,20]—note these are reproduced by Eqs. (4) and (3)
below]. The steady-state infected fraction is plotted as a
function of the nondimensional recovery rate �=� in
Fig. 1(b). The master equation solutions give a signifi-
cantly better estimate of the epidemic threshold than the
standard approximations: we pursue this further below.
Figs. 2(a) and 2(b) demonstrate that similar conclusions
hold for zero-temperature Glauber dynamics [21] on net-
works with truncated power-law degree distributions and
on 3-regular random graphs. Here the comparison is with
the mean-field theory of [22] [see also (4) below], and the
pair approximation from Eq. (3) below. Figure 2(b) shows
that our approach captures the fact that T ¼ 0 Glauber
dynamics on networks can freeze in disordered states;
this phenomenon is not captured at all by MF [22].
For dynamics on a general network, with nonempty

degree classes from k ¼ 0 up to a cutoff kmax, the number
of differential equations in the system (1) and (2) is
ðkmax þ 1Þðkmax þ 2Þ, and so grows with the square of
the largest degree. In certain no-recovery cases (i.e.,
Rk;m � 0), such as Watts’ threshold model [23], k-core
size calculations [24], and bootstrap percolation [25], we
can show that an exact solution of the master equations is
obtained by solving just two differential equations (as
given in [26]). For general dynamics, however, some ap-
proximation is necessary if it is desirable to reduce the
master equations to a lower-dimensional system. One pos-
sibility is to consider the parameters pkðtÞ [qkðtÞ], defined
as the probability that a randomly-chosen neighbor of a
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FIG. 2 (color online). Infected fraction �ðtÞ (i.e., fraction of
þ1 spins) for zero-temperature Glauber dynamics on
(a) networks with truncated power-law degree distribution: Pk /
k�2:5 for 3 � k � 20, and (b) 3-regular random graphs. In each
case the initial condition is �ð0Þ ¼ 0:4.

TABLE I. Infection and recovery rates for some examples of
binary-state dynamics on networks: k is the node’s degree, m is
its number of infected neighbors. Parameters � and � are SIS
transmission and recovery rates; T and J are the temperature and
interaction strength for the Ising model; Q is the majority-vote
noise parameter. Note T ¼ 0 Glauber dynamics are identical to
those of the Q ¼ 0 majority-vote model.

Process Fk;m Rk;m

SIS [15] �m �
Voter model [16] m=k 1� Fk;m

Glauber dynamics [17] ½1þ expð 2JT ðk� 2mÞÞ��1 1� Fk;m

Majority-vote [13]

8<
:
Q if m< k=2
1=2 if m ¼ k=2
1�Q if m> k=2

1� Fk;m
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susceptible (infected) k-degree node is infected at time t.
Noting that pkðtÞ can be expressed in terms of sk;m asP

k
m¼0 msk;m=

P
k
m¼0 ksk;m, an evolution equation for pk

may be derived by multiplying Eq. (1) by m and summing
over m. The right-hand side of the resulting equation
contains higher moments of sk;m, so a closure approxima-

tion is needed to proceed. If we make the ansatz that sk;m
and ik;m are proportional to binomial distributions: sk;m �
ð1� �kÞBk;mðpkÞ, ik;m � �kBk;mðqkÞ, we obtain the pair

approximation (PA), consisting of the 3kmax þ 1 differen-
tial equations:

d

dt
�k¼��k

Xk
m¼0

Rk;mBk;mðqkÞþð1��kÞ
Xk
m¼0

Fk;mBk;mðpkÞ;

d

dt
pk¼

Xk
m¼0

�
pk�m

k

��
Fk;mBk;mðpkÞ� �k

1��k

Rk;mBk;mðqkÞ
�

þ ��sð1�pkÞ� ��spk;

d

dt
qk¼

Xk
m¼0

�
qk�m

k

��
Rk;mBk;mðqkÞ�1��k

�k

Fk;mBk;mðpkÞ
�

þ ��ið1�qkÞ� ��iqk (3)

for each k class. The rates here are given by inserting the
binomial ansatz into the general formulas, so that ��s, for
example, is hð1� �kÞ

P
mðk�mÞFk;mBk;mðpkÞi=hð1� �kÞ

kð1� pkÞi; initial conditions are �kð0Þ ¼ pkð0Þ ¼
qkð0Þ ¼ �ð0Þ.

A cruder, mean-field (MF), approximation results from
replacing both pk and qk with !: sk;m � ð1� �kÞBk;mð!Þ,
ik;m � �kBk;mð!Þ, where ! ¼ hkz �ki is the probability that

one end of a randomly chosen edge is infected. Using this
ansatz in the master equations yields a closed system of
kmax þ 1 differential equations for the fraction �k of in-
fected k-degree nodes:

d

dt
�k ¼ ��k

Xk
m¼0

Rk;mBk;mð!Þ

þ ð1� �kÞ
Xk
m¼0

Fk;mBk;mð!Þ; (4)

with �kð0Þ ¼ �ð0Þ.
The PA and MF approximations (3) and (4) yield in-

creasingly simpler systems of equations for any process
that can be expressed in terms of infection and recovery
rates Fk;m and Rk;m. For the SIS model, the PA Eqs. (3) are

those of Eames and Keeling [11], while the MF
Eqs. (4) are precisely those of Pastor-Satorras and
Vespignani [3]. For the voter model [16], the MF Eqs. (4)
reduce to those in [27], while the PA Eqs. (3) lie between
those of Ref. [12] and Ref. [28] in terms of complexity. The
MF Eqs. (4) for zero-temperature Glauber dynamics re-
produce the mean-field theory of [22] (in the limit of
infinite network size). For this and related nonequilibrium
spin models, such as the majority-vote model, steady-state
PA equations for the special case of 4-regular graphs (i.e.,
Pk ¼ �k;4) are derived in [14]. However, to our knowledge,

no PA equations such as (3) have been derived for these
dynamics on networks with arbitrary degree distribution
Pk. Note also that a coarser type of PA, using the ansatz
sk;m ¼ ð1� �kÞBk;mðpÞ, ik;m ¼ �kBk;mðqÞ (i.e., with

k-independent parameters p and q) gives the equations
recently derived in [29] for SIS, and those in [28] for the
voter model. This will be examined in future work.
We briefly highlight another important application of the

master equations: the calculation of the epidemic threshold
for the SIS disease-spread model [8,9]. If the seed fraction
of infected nodes �ð0Þ is sufficiently small, an appropriate
linearization of the master Eqs. (1) and (2) determines
whether the infected fraction will grow (to epidemic pro-
portions), or will decay to zero. This reduces the problem
to linear stability analysis, and so to the calculation of the
largest eigenvalue of a matrix (with dimension of order
k2max). In Table II(a) we show the critical values of the

TABLE II. (a) Critical values of �=� for epidemic spread in the SIS model on z-regular
graphs. Lower and upper bounds for the critical value of �=� for the contact process on a tree
(defined as the largest value of �=� for which the infection survives forever with positive
probability) are from [30]. Note that the largest eigenvalue of the adjacency matrix for these
networks is �1 ¼ z, so the method of Prakash et al. [31] gives the same (inaccurate) prediction
for the critical value as MF theory. (b) Critical value of the noise parameter Q in the majority-
vote model on Poisson (Erdös-Rényi) random graphs of mean degree hki ¼ z. Numerical values
are from [32], other values are determined via stability analysis of Eqs. (1)–(4).

(a) SIS, z regular (b) Majority-vote, PRG

z bounds [30] Master Eq. PA [11] MF [3] z num [32] Master Eq. PA MF

3 (1.65, 2) 1.88 2 3 3 0.135 0.137 0.141 0.180

4 (2.56, 3) 2.91 3 4 4 0.181 0.184 0.185 0.214

5 (3.58, 4) 3.93 4 5 6 0.240 0.242 0.242 0.259

10 (8.63, 9) 8.97 9 10 8 0.275 0.277 0.276 0.288
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parameter �=� for SIS dynamics on z-regular random
graphs calculated in this way, and compare with the ex-
plicit values predicted by PA [11,20] and MF [3] methods
(i.e., z� 1 and z, respectively). Recently it was argued that
SIS infection can persist indefinitely in networks contain-
ing nodes of sufficiently high degree, due to recurring
reinfections between hub nodes and their neighbors [9].
The master equation formalism does not capture this effect,
because the definitions of the rates (�s, �s, etc.) use global
counts of edge types, and so wash out structural correla-
tions specific to the immediate neighborhood of hub nodes.

Linear stability analysis may also be applied to spin
models with up-down symmetry, which have the property
Rk;m ¼ 1� Fk;m ¼ Fk;k�m, and where the magnetization

MðtÞ (the average of all spins in the network) is given by
M ¼ 2�� 1. Stability analysis of the (disordered) fixed
point with � ¼ 1=2 gives the location of critical points
marking the transition between disordered and ordered
phases. Applying this method to Glauber dynamics repro-
duces the results of [7] for the critical temperature of the
Ising model. It also accurately approximates numerically-
determined critical values for nonequilibrium spin models,
such as the critical noise Qc in the majority-vote model;
see Table II(b).

In summary, we have derived the master Eqs. (1) and
(2)—first introduced for SIS dynamics in [18]—for general
binary-state dynamics on networks, and demonstrated that
their accuracy supersedes standard MF and PA methods.
Mean-field and pairwise theories are derived as approxi-
mate solutions of the master equations, and Eqs. (3) ex-
plicitly give pair approximations for any dynamics defined
by infection and recovery rates Fk;m and Rk;m. Finally, we

demonstrated the application of the master equations to
calculating epidemic thresholds and critical parameter val-
ues via linear stability analysis, improving significantly on
existing MF and PA estimates.
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