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Results are presented about the origin of the Kohlrausch-Williams-Watts decay of the incoherent

intermediate scattering function (ISF) in molecular dynamics simulated liquid Ni0:5Zr0:5. By the concept

of weakly effective particles (WEPs), we establish an interrelationship between ISF and particle

dynamics. Temporal correlations in the action of WEPs act structure conserving, reflecting that immobile

particles tend to remain immobile. Analysis of the related correlation function yields that these

correlations account quantitatively for the stretched exponential like decay.
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The Kohlrausch-Williams-Watts (KWW) decay of fluc-
tuations, often empirically described by the stretched ex-
ponential (STX) expf�ðt=�Þ�g, is observed in various
kinds of complex systems such as structural glasses and
melts, amorphous polymers, colloidal suspensions, and
spin or orientation glasses. Besides its importance by its
own as signature of complex systems, KWW decay has
gained much interest in the context of glass transition, as
this type of relaxation shifts to macroscopic times under
cooling, thereby initiating glass formation.

Although rather common in nature, the physics behind
the KWW law is a topic under debate. There are highly
elaborated and very successful but rather different ap-
proaches in this field: Some consider defect mediated
relaxation [1–3], which leads to the concept of waiting
time distributions. Some emphasize randomness [4], dis-
order [5] or dynamical heterogeneity, the latter resulting in
a broad spectrum of relaxation times [6,7]. Others concen-
trate on fractal topology of complex systems’ configuration
space [8,9] or on back-jump effects [10]. Mode coupling
theory (MCT) shows that the STX law holds for the
�-decay of the intermediate scattering function (ISF) in
the large-q limit [11]. Moreover, KWW decay is often
described by fractal dynamics [12,13].

This list of references is arbitrary and not complete. It
indicates, however, the large variety of successful theories
in this field. This variety motivated us to analyze molecular
dynamics (MD) simulation data for an atomistic picture of
the KWW decay in liquids and structural glasses. Our
analysis concerns the incoherent ISF of a binary metallic
melt. We describe here three aspects of our approach: First,
the concept of ‘‘strongly’’ and ‘‘weakly effective particles’’
(SEPs and WEPs), which provides a link between the
decay of the ISF and the particle dynamics in the melt;
second, the distribution of SEPs in space and time; third,
correlations in the time distribution of WEPs, which turn
out to give rise to the KWW decay.

Our analysis relies on MD data for a Ni0:5Zr0:5 model
(see, e.g., [14] and references therein) at nominal 1050 K,

just above its glass temperature at the applied cooling rate
of 109 K=s. Aimed at simulating a coarse graining volume
element, we considerNat ¼ 648 particles (324 Ni-, 324 Zr-
atoms) in an orthorhombic simulation box with cyclic
boundary conditions. After 100 ns isothermal annealing,
we record the particle trajectories for 900 ns. Figure 1
shows for Ni and Zr at q1 ¼ 21:6 nm�1 the ISF evaluated
from F�ð�;qÞ ¼ hexpfiqunðt; �Þgi (unðt; �Þ: displacement

of atom n in time interval [t, tþ �]. The brackets symbol-
ize averaging over t and atoms n of type � 2 fNi;Zrg).
Above 0.1 ns the ISFs can be approximated as STX,
�F

� expð� ð�=�F�Þ�Þ, with �F
Ni ¼ 0:766, �F

Ni ¼ 0:61,

�FNi ¼ 105 ns for Ni (Zr: �F
Zr ¼ 0:826, �F

Zr ¼ 0:63, �FZr ¼
500 ns). Definition of � relaxation time ���ðqÞ by
F�ð���ðqÞ;qÞ¼1=e gives �Ni� ðq1Þ¼63 ns, �Zr� ðq1Þ¼355 ns.

The concept of ‘‘strongly’’ and ‘‘weakly effective parti-
cles’’ is introduced by recurring to isotropic melts. There,
rotation invariance leads to F�ð�; qÞ ¼ hj0ðqunðt; �ÞÞi, with
Bessel function j0ðzÞ ¼ sinðzÞ=z. At � ¼ ��

� the relation-
ship hj0i ¼ 1=e holds. Exploiting that j0ðzÞ> 1=e for

FIG. 1 (color online). ISF F�ð�Þ and fraction of WEPs Kc
�ð�Þ

for simulated Ni0:5Zr0:5 at 1050 K. (dotted lines: ISFs approxi-
mated by hj0iWKc

�ð�Þ.)-The inset shows FNið�Þ vs Kc
Nið�Þ for q1

and q2. (Plots FZrð�Þ vs Kc
Zrð�Þ agree with those for Ni within

drawing line thickness.)
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z < zc � 0:7� and j0ðzÞ< 1=e for z > zc, we separate the
atoms for each q and interval [t, tþ �] in two classes,
‘‘strongly effective particles’’ with unðt; �Þ> ucðqÞ :¼
zc=q, and ‘‘weakly effective particles’’ with unðt; �Þ<
ucðqÞ. The WEPs keep the value of the ISF above 1=e.
The SEPs tend to reduce it. q1 ¼ 21:6 nm�1 means
ucðq1Þ ¼ 0:102 nm. For the present system, ucðq1Þ ¼
0:102 nm separates in-cage rattling of the particles and
out-of-cage escape (cf. [15]).

Figure 1 includes the mean fraction of WEPs

Kc
�ð�; qÞ ¼ h#nðt; �Þi (1)

ð#nðt; �Þ ¼ �fucðqÞ � unðt; �Þg, �: Heaviside step func-
tion). Like F�ð�; qÞ, Kc

�ð�; qÞ shows STX-type decay

above 0.1 ns (for Ni: �K
Ni ¼ 0:953, �K

Niðq1Þ ¼ 0:62,
�KNiðq1Þ ¼ 110 ns; for Zr: �K

Zr ¼ 0:981, �K
Zrðq1Þ ¼ 0:69,

�KZrðq1Þ ¼ 580 ns).
In the KWW-region F�ð�Þ and Kc

�ð�Þ decrease mono-

tonically with �. This implies a monotonic increase of F�

as function of Kc
�. Then there exists a bijective isomor-

phism between Kc
� and F�: The former is a unique picture

of the latter and vice versa. This allows us to discuss the
behavior of F� in terms of the fraction of WEPs or SEPs

and to relate properties of F�ð�; qÞ to atomistic details

visible in Kc
�.

For quantitative treatment, we introduce the fraction of
SEPs by K�ð�; qÞ ¼ h1� #nðt; �Þi and make use of the

decomposition

F�ð�Þ ¼ hj0iWKc
�ð�Þ þ hj0isK�ð�Þ: (2)

Here hj0iW ¼ hj0ðqunÞ#nðt; �Þi=Kc
�ð�Þ is the mean of j0

over WEPs, hj0iS ¼ hj0ðqunÞð1� #nðt; �ÞÞi=K�ð�Þ that

over SEPs, both depending on q, �, �. Regarding Eq. (2),
we shall mention two findings from our MD data: First, due
to the oscillations of j0 beyond zc, hj0iSK� is a minor

contribution to F� with absolute value smaller than 0.01

and can be neglected in the present context. This is dem-
onstrated in Fig. 1 by the dashed lines, approximating F�

by hj0iWKc
�ð�Þ. Second, as shown in the inset of Fig. 1,

there is a nearly linear relationship between F�ð�; qÞ and
Kc

�ð�; qÞ in the range of the STX law. According to this,

hj0iW is nearly independent of � and of the fraction of
WEPs in the range 0:95>Kcð�Þ> 0:05 or 0:05 ns< �<
500 ns. Thus, the KWW-decay of F� reflects the decay of

Kc
� with �, up to minor corrections.

Figure 2 demonstrates the distribution of SEPs in space.
For intervals [t0, t0 þ �] with � ¼ 10, 40, 160 ns, the figure
displays the positions xnðt0Þ of Ni- and Zr-SEPs in the
melt, that means of atoms with unðt0; �Þ> ucðq1Þ. (All
intervals start at time t0 ¼ 100 ns of Fig. 3.) The figures
present heterogeneous dynamics with SEPs forming clus-
ters in space, where the increasing cluster size with interval
length is in accordance with the results from analyzing

dynamic heterogeneity (DH) (see, e.g., the recent review
[16] and for the present system [14]).
Figure 3 shows the fraction of Ni-SEPs in intervals [ti;

ti þ �] plotted as short horizontal lines against the starting
times ti for various �. The figure uses equal-spaced ti with
separation 10 ns, covering about 750 ns in total. The �
values range from 10 to 320 ns and characterize the main
part of the � decay in the Ni subsystem from the late-�
region around 10 ns to the region well beyond �Ni� . The
figure displays intermittent dynamics with fluctuating frac-
tion of Ni-SEPs (reflecting the size of the ‘‘coarse grain-
ing’’ box). The mean values grow with � and agree with
KNið�Þ ¼ 1� Kc

Nið�Þ from Fig. 1. In Fig. 3, �2ð�Þ is the

variance of the fluctuating fraction of SEPs. It corresponds
to the self part of the �4 susceptibility (in the version of the
early DH analysis [17]), up to a factor V=kT (V: volume of
simulation box). As function of �, �2 exhibits the peak
structure expected from DH [16,17].
Figure 3 implies that the larger fraction of Ni-SEPs at

larger intervals � are due to accumulation of low-fraction
contributions from short �. Deviation of the � decay from
exponential Debye relaxation relies on correlations during

FIG. 2 (color online). Initial position of SEPs in intervals [t0,
t0 þ �] for � ¼ 10, 40, 160 ns. NNi, NZr: number of Ni or Zr
atoms in the sets of SEPs. (Small spheres: Ni, large spheres: Zr
atoms. t0 ¼ 100 ns of Fig. 3.)

FIG. 3 (color online). Fraction of Ni-SEPs, fSNiðti; �Þ, in inter-
vals [ti, ti þ �] indicated by short lines vs ti ¼ 10i ns for
� ¼ 10; 20; . . . 320 ns. The mean values at fixed � agree with
1� Kc

Nið�Þ of Fig. 1. �2: variance of fSNiðti; �Þ at fixed �.
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this accumulation. Spatial and temporal correlations of
particle dynamics have been successfully studied in the
context of DH (see, e.g., [16]) where much emphasize has
been laid on searching for a diverging length scale at
growing �. We analyze the correlations by use of
the probability P�

Wð�; �Þ for a particle to act as WEP in
[t0, t0 þ �] when having acted asWEP in the earlier interval
[t, tþ �], with t0 ¼ tþ �,

P�
Wð�; �Þ ¼ h#nðtþ �; �Þ#nðt; �Þi=h#nðt; �Þi: (3a)

We transcribe it as

P�
Wð�; �Þ ¼ Kc

�ð�Þ þ K�ð�Þ��ð�; �Þ; (3b)

��ð�; �Þ ¼ h�#nðtþ �; �Þ�#nðt; �Þi=D0: (4)

��ð�; �Þmeasures correlations of fluctuations�#nðt;�Þ¼
#nðt;�Þ�h#nð�Þi. Normalization of ��ð�; �Þ to 1 for
� ! 0 leads to D0 ¼ Kc

�ð�ÞK�ð�Þ. We may introduce the

probability of SEPs to remain SEPs in shifted intervals,
P�
S ð�; �Þ, by changing in Eq. (3a) #nð. . . ; �Þ into

1-#nð. . . ; �Þ. With Eq. (4) then holds P�
S ð�; �Þ ¼ K�ð�Þ þ

Kc
�ð�Þ��ð�; �Þ, which reflects that ��ð�; �Þ measures the

correlations in the fluctuations of SEPs, too.
Figure 4 displays �Nið�; �Þ for �-values between 2.5

and 160 ns, plotted against �=�. For nonoverlapping in-
tervals, �=� > 1, the finite values of �Nið�; �Þ indicate
temporal correlations. They make that P�

Wð�> �; �Þ is
larger than Kc

�ð�Þ, its value for random transfer between

WEPs and SEPs. (This meaning of Kc
�ð�Þ follows from

Eq. (3a), since there #nðtþ �; �Þ can be substituted by its
average in the random case and �> �.) Consequently, the
relaxation of structure fluctuations is reduced compared to
random decay, which means we have ‘‘structure conserv-
ing correlation’’ (SCC). SCC can be visualized as tempo-
rary partial decomposition of the set of particles in those

which remain WEPs and those which preferentially act as
SEPs for several interval lengths.
SCC plays an important role for the KWW decay of

Kc
�ð�Þ as the fraction of WEPs in interval I0 ¼ ½ti; ti þ 2��

is determined by the fraction of WEPs in the half-interval
I1 ¼ ½ti; ti þ �� and the surviving ones in [ti þ �, ti þ 2�],
modified by minor corrections. There is the (exact) rela-
tionship

Kc
�ð2�Þ ¼ Kc

�ð�ÞP�
Wð�; �Þ þ �Kc

�ð2�Þ (5)

where �Kc
�ð2�Þ counts particles that act as SEPs in I1 and/

or I2 while the combined motion in both half-intervals
makes them WEPs in I0, and (with negative sign) those
which are WEPs in I1 and I2 while combined displacement
makes them SEPs in I0. The latter mean ‘‘drifting’’ parti-
cles, the former are back jumping particles, another aspect
of SCC.
By Eq. (3b), Kc

�P
�
W in Eq. (5) becomes Kc

�K
c
� þ

Kc
��

�ð1� Kc
�Þ. The first term describes hypothetic uncor-

related random transitions of WEPs into SEPs, the second
means SCC counteracting this random decay. Including
�Kc

�, there are three terms in Eq. (5) governing the decay

of Kc
�ð�Þ. Understanding the action of these terms allows

understanding the atomistic mechanism of KWW-
relaxation. Regarding this we present in Fig. 5 iterated
solutions of Eq. (5) under various conditions, at left for
Ni, right for Zr. Solutions A (dots in Fig. 5) use ��ð�; �Þ
(given for Ni in the inset of Fig. 4) and �Kc

�ð2�Þ from the

MD data. Solutions B (triangles) rely on constant��� and
�Kc

� ¼ 0, using ��Ni � 0:39 as predicted by the inset of

Fig. 4 for Ni in the �-decay regime, and ��Zr � 0:31
deduced from similar Zr-data. The lines under the symbols
are STX-curves. Solutions C (full lines) originate from
� ¼ 0, �Kc

� ¼ 0. In this case Eq. (5) predicts exponential

Debye decay of Kc
�, as the rhs. reduces to ðKc

�Þ2.- In Fig. 5

the Kc
�ð�Þ curves are shifted along the � axis to coincide at

Kc ¼ 0:925 in case of Ni (Kc ¼ 0:975 in case of Zr).
By construction, solutions A agree with the initial Kc

�ð�Þ
of Fig. 1, and the STX curves under the dots are those with
parameters from the simulated Kc

�ð�Þ given below Eq. (1).

For solutions B, the STX curves refer to�� ¼ 1 and��
Ni ¼

0:61, ��
Zr ¼ 0:71. Comparing solutions B with C shows

that in the �-decay regime ��� initiates reduction of �
from its Debye value 1 to 0.61 for Ni (to 0.71 for Zr).
Comparison of solutions A and B indicates that �Kc

� has

minor effect on � but accounts for reduction of the plateau
value� and an additional decrease at � > �KNi. The latter is
expected from drifting particles at large �, the former may
be ascribed to rapid back-jump processes. The dominant
importance of��� for reducing � below 1 is confirmed by
a further solution of Eq. (5), not exhibited in Fig. 5,
which takes into account �Kc

�ð2�Þ and the difference

��ð�; �Þ ����, and which shows the reduction of � but
yields ��

� � 1.

FIG. 4 (color online). Correlation function �Nið�; �Þ [see
Eq. (4)], characterizing the fraction of Ni-atoms acting as
WEPs in [tþ �, tþ �þ �] when having acted as WEPs in [t,
tþ �], plotted against �=�. The inset shows �Nið�; �Þ, the
correlation between successive intervals of length �.

PRL 107, 067801 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

5 AUGUST 2011

067801-3



In case of STX behavior, � may be expressed as func-
tion of �� and �Kc

� by lnð1= lnf�K
�=K

c
�ð1=2�K� ÞgÞ= lnð2Þ

with Kc
�ð1=2�K� Þ from solving Eqs. (5) and (3) for

Kc
�ð1=2�K� Þ at � ¼ 1=2�K� , exploiting Kc

�ð�K� Þ ¼ �K
�=e. In

the limit of negligible �Kc
�ð�K� Þ (approximately fulfilled in

our MD data by j�Kc
�ð�K� Þj< 0:008 for Ni and Zr) and

�K
� ! 1, the resulting � values closely follow the relation

� � 1���ð1=2�K� Þ, with deviation less than 0.01 for

0<�� < 1. This relation gives a quantitative estimate
for the interrelation between � and ��. It parallels a
suggestion by Vogel and Glotzer [18] for a correlation
between DH and � of the ISF, deduced from ana-
lyzing data of various MD models (Silica [18], polymer
melt [19(a)], Lennard-Jones mixtures [17,19(b)], water
[19(c)], and Djugutov liquid [19(d)]), which show lowest
� in the Djugutov model with largest DH when measured,
for example, by the mean size of clusters of most mobile
atoms. Moreover, in the limit of large q, MCT predicts �
independent of q for the ISF [11] and � ! b, the von-
Schweidler exponent of MCT. Thus the here found inter-
relationship between � and � (and eventually �Kc)
implies a connection between the correlation in the sur-
vival of WEPs for large q and the MCT exponents.

As discussed in the beginning, due to nearly � indepen-
dent hj0ðq; �ÞiW in the �-decay regime, F�ð�; qÞ is a nearly
linear function of Kc

�ð�; qÞ and reflects the decay of the

latter. Thus our analysis unambiguously demonstrates for
the present example that the KWW decay of F�ð�; q1Þ is
due to temporal correlations in the survival of WEPs,
initiating non-Markovian dynamics. (Similar conclusions
can be drawn for the ISFs at q2.) Sources of such correla-
tions are, for example, the phenomena considered in the
context of spatial DH (e.g., [16–19]) ranging from struc-

ture related heterogeneity in the sense of propensity [20] to
dynamics initiated in the genuine sense of dynamical facil-
itation [21]. However, one should have in mind that tem-
poral dynamic correlations may exist without spatial DH
(e.g., [4]), and that correlations in terms of preferred back
jumps [10] may be an alternative, although being negli-
gible for characterizing the origin of KWW-decay here.
Our results imply that rather different physical phenomena
can lead to KWW-type decay, provided they yield suitable
correlations or atomic trajectories reflecting such correla-
tions. This may explain the success of the broad spectrum
of theories in this field addressed in the introduction.
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FIG. 5 (color online). Iterated solutions Kc
� of Eq. (5) against

lnð�=�pÞ (�p: see text) for Ni (left) and Zr (right). (A) ��ð�; �Þ,
�Kc

�ð2�Þ from MD data, reproduces the MD curves of

Fig. 1; (B) ��� ¼ 0:39, 0.31, �Kc
� ¼ 0 (representative for Ni

and Zr in the present model around �K� ), yields reasonable

stretching parameter � but fails regarding plateau value �;
(C) ��� ¼ 0, �Kc

� ¼ 0, Debye decay. (Full lines: STX-curves;

in case C: exponential.)
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