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The Hubbard model on the honeycomb lattice is a well-known model for graphene. Equally well known
is the Peierls type of instability of the lattice bond lengths. In the context of these two approximations we
ask and answer the question of the possible lattice distortions for graphene in zero magnetic field. The
answer is that in the thermodynamic limit only periodic, reflection-symmetric distortions are allowed and
these have at most 6 atoms per unit cell as compared to two atoms for the undistorted lattice.
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Graphene is a two-dimensional array of carbon atoms
arranged in a honeycomb lattice. The number of delocal-
ized electrons N equals the number of carbon atoms, i.e.,
the conduction band is half-filled. The dynamics of the
electrons is often modeled by the Hubbard Hamiltonian

H(T) = — Z Z txy(c;gcy,(, + H.c.)

a=11{xy)

+ Ug(nﬂ - %)(nxl - %) + D F(ty,). (1)

)

The c,, are fermion annihilation operators and n,, =
c;[,gcx,(,. For the purposes of this Letter the on-site repul-
sion U can have any sign as long as it is the same for all
lattice sites. In particular, for U = 0 we have the Hiickel
model.

The notation emphasizes the dependence on the nearest-
neighbor hopping matrix 7' = (,,). We take the hopping
matrix elements 7, to be positive, although not necessarily
independent of the pair x, y. (By the well-known particle-
hole transformation on a bipartite lattice, we could, as well,
take the 7,,’s negative.) It is important for us that 7, is real,
i.e., that there is no magnetic field.

The interesting quantity, which does not usually appear
in the Hubbard model, is the distortion energy F(t,,). What
we are assuming is that 7,, depends on the physical dis-
tance d,, between the lattice sites x and y. There is an
equilibrium value d© and deviations from this value cost a
positive energy. After eliminating d,, we can assume that
the distortion energy depends on t,,. This is the quantity
F(t,,) in (1). Thus, F(r) has a minimum at = 1©, corre-
sponding to d©, and it goes to infinity as ¢ goes to zero
(infinitely separated atoms) or to infinity (no atomic sepa-
ration). We do not have to assume that F is convex. [We
could take account of the possible distortion energy
connected with the change in bond angles or possible non-
planarity, provided these are local, i.e., >  F'(t., t,2, 3),
where F’ is a symmetric function of the three bonds
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attached to x, but we do not do so explicitly. We do not
take account of longer range interactions [1,2]. ]

The problem we address is the possible configurations
T = (t,,) that minimize the ground state energy E(T) of
H(T). We answer this in the thermodynamic limit by
proving that one ends up with a relatively simple periodic
configuration. The basic fact is that the reflection symme-
try across bonds must be preserved. Nothing more compli-
cated can occur. This periodic configuration is shown in
Fig. 1(a), where it will be seen that the resulting lattice can
have at most three different lengths and the unit cell can
have at most six atoms. All three lengths can be equal, of
course. Another special case is the so-called Kekulé lattice
in which two of the lengths are equal. It also has six
atoms per unit cell. Many authors have considered various
possible energy-minimizing periodic distortions. The
discussion can and should also be extended to include
nonperiodic and chaotic structures, as we do. Our contri-
bution is to rigorously exclude anything more complicated
than that shown in Fig. 1(a), in the thermodynamic limit, in
agreement with, e.g., [3]. In particular, the ALT structure of
Refs. [4,5] in Fig. 1(b) is not an energy minimizer for the

FIG. 1. (a) Shown is the only graphene structure allowed by
our theorem. The locations of the three possible bond lengths are
indicated by heavy-solid, light-solid, and dashed lines. There are
six atoms (or three hexagons) per unit cell. The Kekulé structure
is the special case of equal length solid lines. (b) The ALT
structure shown breaks some of the reflection symmetry and is
not allowed by our theorem.
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Hubbard model, since it breaks two of the three reflection
symmetries shown in Fig. 1(a).

The idea that distortion of a lattice can lower the energy
is sometimes called the Peierls instability, but the idea is
older (see [6]). Peierls’ essential contribution [7] was to
realize that this distortion always occurs in 1D for an
infinitely long chain or ring of atoms. It does not always
occur in higher dimensions, or in a finite 1D ring, e.g.,
benzene.

Let us recall the situation in one dimension, i.e., the
annulenes like benzene or polyacetylene. It has been
proved [6,8] that for a closed ring of N atoms, with
Hamiltonian as in (1), the minimum energy configuration
is precisely the one in which there are two alternating
bond lengths /; and I,, provided N =2 mod 4 (N =
6,10, 14, ...). It is possible that /; = [,, as is the case in
benzene, but nothing more complicated than dimerization
can ever occur in this model, for any F function. When
N = 0 mod 4 more complicated things can occur when F'is
not a quadratic, e.g., for N = 4 the minimum configuration
can be a trapezoid [8]. Nevertheless, as N goes to infinity
the dimerized energy is always asymptotically exact. The
general case is analyzed in [6] in detail and the stated
conclusion is even shown to apply to the so-called “‘spin-
Peierls model.”

The method of proof for 1D does not generally extend to
higher dimensions. It does not extend to the square lattice
unless a physically unreachable magnetic field is imposed
[9], but, as we discover here, it does extend to the hexago-
nal lattice with zero magnetic field. The reason for this
difference, ultimately, is that the energy-minimizing mag-
netic flux for the square lattice is nonzero, whereas for the
hexagonal lattice it is zero, as assumed in H(T) above [9].

Naturally, we cannot expect perfect periodicity in a finite
lattice, because there will always be edge effects. This
remark motivates the following theorem, whose proof we
will outline here.

Theorem. For any triplet of hopping matrix elements
@, 1@, 1O let eV, 12, 1Y) denote the ground state
energy per atom in the thermodynamic limit for the
Hubbard model (1) with these #’s arranged as in Fig. 1(a).
Let e be the minimum of e(s), /@, /) with respect to
these #’s. Then the ground state energy E(T) of (1) with
arbitrary #’s on a large, finite lattice A, with |A] sites,
satisfies

E(T) = [Ale + o(|A]), 2

where o(|A]) = const|A]'/21n|A|. The same conclusion
holds for the free energy at finite temperature.

Strictly speaking, we prove that there is a minimizer (to
leading order) with the structure of Fig. 1(a), but we do not
rigorously prove uniqueness of this structure. Nevertheless,
the uniqueness is evident for two reasons: one is that our
proof proceeds by showing that repeated reflection of a
single line cannot raise the energy, but in reality it surely

lowers it. The second is that the structure made this way
out of repeated reflections still has the hopping matrix
elements that were in the given row before it was reflected.
At this point we could lower the energy still further by
reevaluating the optimum ¢ values. These will surely
change, and the energy will be lower because the equation
for the optimum values, namely, F'(z,,) — 2ct cy) =
dE/dt,, = 0 will likely no longer be satisfied with the
old ¢ values. For example, the ALT structure in Fig. 1(b)
morphs into the Fig. 1(a) structure of the Kekulé type. If
the ¢ value on the heavy bond did not change, then the
expectation value of ol ¢, along the distinguished bond
would have to be the same as for the undistinguished
bond—which it is not.

We recall two facts about the Hubbard model (1), which
hold even for arbitrary T on any finite, bipartite lattice A
with an even number of sites. (1) Among the absolute
ground states there is one with N = |A| = number of sites.
If U # 0, this state is unique [6]. This means that we do not
have to worry about constraining the particle number to be
equal to the number of lattice sites, |A|. This constraint is
automatic. (2) Among the ground states there is one with
total spin zero [10].

The main tool we are going to use is reflection positivity
which originated in quantum field theory [11]. It was later
used in statistical mechanics [12—16] to prove long range
order of systems with continuous symmetry. It was also
important for static situations like the solution of the flux
phase problem [9]. It is in the latter sense that we apply it
here. Our theorem above can be rephrased by saying that
the lowest energy occurs for a lattice configuration that
preserves the threefold reflection symmetry of the hexago-
nal lattice, as shown in Fig. 1(a).

Let A be a piece of a hexagonal lattice that is reflection
symmetric about a line [ that passes perpendicularly
through bonds. The two halves of the lattice will be called
A; and Ag. Let T} and Ty denote the hopping elements on
the left and on the right side, respectively, and let T, be
those corresponding to bonds cut by /. Let 7] be the
reflection of 7 to the right and, similarly, let T be the
reflection of T to the left. Then, symbolically, T =
(T;, Ty, Tg) and we want to consider Tt = (T, Ty, T)
and TR = (T%, Ty, Tg). The corresponding ground state
energies are related by the basic inequality, whose proof
is in [6,9,17];

E(T) = JE(TY) + LE(TR). 3)

Our way forward is now obvious. Think of an infinite
hexagonal lattice. There are three directions in space for
which we can draw lines in these directions that cut lattice
bonds perpendicularly (but do not pass through sites). For
each of these three directions there are infinitely many
parallel lines with this property. We would like to use
reflection positivity for each of them to say that if the
hopping matrix elements are not as shown in Fig. 1(a),
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then we can lower the energy by reflecting one half of
the lattice onto the other half and keeping the better of the
two choices according to inequality (3). In short, if the
optimum configuration did not have the symmetry of
Fig. 1(a) the energy could be lowered, thereby giving a
contradiction.

The physics is now clear. The mathematical problem is
to make rigorous sense of the lattice reflections by consid-
ering finite lattices and passing to the thermodynamic limit
in an appropriate way so that at each stage the error we
make is of lower order than the area |A|. This is accom-
plished by imposing periodic boundary conditions on the
finite lattice, but it is much more complicated, geometri-
cally, than a similar problem for the square lattice (with an
unrealistic magnetic field flux). There, one can impose
periodic boundary conditions in two orthogonal directions
simultaneously. This is impossible for the hexagonal lattice
since the three reflection directions are not orthogonal to
each other, and we can impose periodic boundary condi-
tions in only one direction at a time; see [16] for a dis-
cussion of this.

Nevertheless the problem can be solved and we sketch
the solution here for the ground state energy. The extension
to finite temperature follows by similar arguments using
the reflection positivity established in [9,13-15].

Proof sketch of the Theorem.—Step 1. The conclusion
shown in Fig. 1(a) can be deduced from a statement about
individual bonds. Any bond, b, in our lattice (except for
those at the boundary) has four other bonds connected to it,
as shown in Fig. 2(b). Two of these, together with b, form
part of a hexagon and the other two, together with b, form
part of a neighboring hexagon. We say that b is happy if the
first two bonds have equal 7 values and also the second two
have equal ¢ values (possibly different values). The ¢ value
of b itself is irrelevant for this definition. (A similar defi-
nition applies to bonds at the edge, which have fewer than
four bonds attached to them.)

Our goal is to show that every bond in a minimizing
configuration is happy, for this will imply the theorem.
To be precise we shall show that all except |A|'/21n|A| of
the bonds are happy, but this is good enough for the

thermodynamic limit.

(a) (b
FIG. 2. Some definitions: (a) The top figure is a single row and
the bottom figure is a reflected # row. They are joined by

overlapping the common vertical bonds. (b) A happy bond
(heavy line) has the ¢ values of the four adjacent bonds equal
in pairs, as shown.

)

Step 2. We consider an increasing sequence of A’s, each
of which is a rectangular piece of the hexagonal lattice,
with even side lengths of order L. Approximately one third
of the bonds are oriented in the y direction. We periodize A
in the y direction by connecting the sites on the top row to
the corresponding sites in the bottom row to form a new
row of hexagons, and call the new lattice A. This leads to a
cylinder whose axis is parallel to the x axis. The new
hopping matrix T consists of the old hopping matrix T
and some new positive elements 7, connecting the top to
the bottom. The new Hubbard Hamiltonian H(T) is defined
as in (1) except that the (positive) 7,,’s which connect top
to bottom are inserted with a minus sign. With this con-
vention, every hexagon on the cylinder has flux zero and
any circuit around the cylinder that encircles the cylinder
axis has length 0 mod 4 and has flux 7 [18]. (The flux of a
circuit is the argument of the product of the #’s along this
circuit.) The importance of these fluxes lies in the follow-
ing fact: reflection positivity requires dividing the lattice
into two pieces and this requires cutting bonds, which
means cutting closed circuits. In order to have reflection
positivity every closed circuit that is cut must have flux
a if the length of the circuit is 0 mod 4 and flux O if it is 2
mod 4. This is shown in [9,17]. The length of a hexagon
circuit is 6 and the length of a circuit going around the
cylinder is always 0 mod 4.

The insertion of additional bonds changes the energy
from E(T) to E(T), the ground state energy of H(T), by at
most O(L), i.e., order 1/L per atom.

We think of this cylinder as being composed of rows,
parallel to the axis, as shown in Fig. 2(a), together with
their reflections, which we shall call 6 rows. Thus A is a
sequence of rows interspersed with 6 rows. Each row and 6
row has its prescribed hopping matrix elements. Let us
denote the rows as we go around the cylinder by
Ay, 0A,, Az, 0Ay, ..., Ay—1, 0Ay, (With M of order L).
From these we can create M new configurations
T,,..., Ty of matrix elements of which the jth one has
the rows A i 6A i A j» 0A I It is a well-known conse-
quence of reflection positivity (3) (called the chessboard
estimate [6,11,14,15]) that

L1
E(T) ZM E E(T)), 4)
j=

from which we see that one of the T ; configurations is
energetically at least as good as the original T configura-
tion.Ina T ; configuration every vertical bond is happy.

At this point we have established a T configuration for
which all the vertical bonds are happy. We have no knowl-
edge of the happiness of the zigzag bonds between the
vertical bonds. Our next goal is to make 50% of the
remaining zigzag bonds happy without destroying
the happiness of very many of the vertical bonds. This is
the difficult step.
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(a) (b)

FIG. 3. (a) The heavy lines show the more than 50% happy
bonds after reflecting in orientations 1 and 2. (b) shows the more
than 75% happy bonds after reflecting in orientations 1, 2, and
again 1.

Step 3. We resist the temptation to cut the cylinder along
the line by which it was originally formed. Instead, we
proceed as follows, and we urge the reader to follow this
construction by forming a cylinder from a piece of paper
and tape. We start at one edge of the cylinder and, with a
pair of scissors we cut the paper along a line that is 30°
from the axis (so 60° from the vertical direction). The line
should not go through the atoms and it should cut an even
number of bonds. In this way we cut a spiral that eventually
reaches the other edge of the cylinder and we lay the paper
out flat on the table. It will be noted that there are two ways
to stitch this parallelogram piece of paper together to form
a cylinder, by stitching one or the other pair of parallel
sides. One way is just to stitch it back the way we cut it.
The second, which is the one we will use, is to stitch the
other sides (which incurs an unimportant screw disloca-
tion). We pay a surface energy to accomplish this. The old
vertical bonds that were parallel to the y axis now lie at an
angle of 60° to the axis of the new cylinder (which we
again assume to be parallel to the x axis), and a different set
of bonds now lies parallel to the y axis.

Again we focus our attention on a single row of the new
cylinder, as shown in Fig. 2(a). The happiness established
in Step 2 means that every second zigzag bond of the new
row is happy. We now repeat the reflection positivity argu-
ment. Inequality (4) allows us to repeat one row periodi-
cally. This repetition preserves the happiness of every
second bond on each horizontal zigzag line and makes
every vertical (in the new orientation) bond happy. The
resulting network of happy bonds consists of chains as
shown by heavy lines in Fig. 3(a).

Step 4. We cut and paste again and use reflection pos-
itivity to achieve happiness for seven out of eight zigzag
bonds. The chains are now seven bonds thick.

After k steps all the vertical bonds and 2¥ — 1 out of
every consecutive 2f zigzag bonds are happy. We have paid

a surface energy k times and we also might have incorrect
bonds along the sequence of cut lines, but each of these
corrections can change the energy at most by a quantity of
order L. If we take k ~ In, L, we find that all except possibly
order kL bonds are happy, and we have paid an energy error
of at most O(LIn,L). This is what we wanted to show.

Conclusion.—The Hubbard model for graphene on the
hexagonal lattice has a special property called reflection
positivity that the square lattice does not have. With the aid
of this property we are able to limit the kind of lattice
distortions allowed by this model. Only distortions that
preserve the threefold reflection symmetry of the lattice
are possible in the thermodynamic limit.
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