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The quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal

(TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit

coupling and an exchange field, which break both inversion and TR symmetries. It is found that the QSH

state characterized by nonzero spin Chern numbers C� ¼ �1 persists when the TR symmetry is broken.

A topological phase transition from the TR-symmetry-broken QSH phase to a quantum anomalous Hall

phase occurs at a critical exchange field, where the bulk band gap just closes. It is also shown that the

transition from the TR-symmetry-broken QSH phase to an ordinary insulator state cannot happen without

closing the band gap.
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The quantum spin Hall (QSH) effect is a new topologi-
cally ordered electronic state, which occurs in insulators
without a magnetic field [1]. A QSH state of matter has a
bulk energy gap separating the valence and conduction
bands and a pair of gapless spin-filtered edge states on
the boundary. The currents carried by the edge states are
dissipationless due to the protection of time-reversal (TR)
symmetry and immune to nonmagnetic scattering. The
QSH effect was first predicted in two-dimensional (2D)
models [2,3]. It was experimentally confirmed soon after,
not in graphene sheets [2] but in mercury telluride (HgTe)
quantum wells [3,4].

Graphene hosts an interesting electronic system. Its
conduction and valence bands meet at two inequivalent
Dirac points. Kane and Mele proposed that the intrinsic
spin-orbit coupling (SOC) would open a small band gap in
the bulk and also establish spin-filtered edge states that
cross inside the band gap, giving rise to the QSH effect [2].
The gapless edge states in the QSH systems persist even
when the electron spin ŝz conservation is destroyed in the
system, e.g., by the Rashba SOC, and are robust against
weak electron-electron interactions and disorder [2,5].
While the SOC strength may be too weak in pure graphene
system, the Kane and Mele model captures the essential
physics of a class of insulators with nontrivial band topol-
ogy [6,7]. A central issue relating to the QSH effect is how
to describe the topological nature of the systems. A Z2

topological index was introduced to classify TR invariant
systems [8], and a spin Chern number was also suggested
to characterize the topological order [5]. The spin Chern
number was originally introduced in finite-size systems by
imposing spin-dependent boundary conditions [5].
Recently, based upon the noncommutative theory of the
Chern number [9], Prodan [10] redefined the spin Chern
number in the thermodynamic limit through band
projection without using any boundary conditions. It has
been shown that the Z2 invariant and spin Chern

number yield equivalent descriptions for TR invariant sys-
tems [10–12].
The QSH effect is considered to be closely related to the

TR symmetry that provides a protection for the edge states
and the Z2 invariant. An open question is whether or not we
can have QSH-like phase in a system where the TR sym-
metry is broken. Very recently, it was suggested [13] that
the quantum anomalous Hall (QAH) effect can be realized
in graphene by introducing Rashba SOC and an exchange
field. In this Letter, we study the Kane and Mele model by
including an exchange field. We calculate the spin Chern
number Cs analytically and use this integer invariant to
distinguish different topological phases in the model with
breaking TR symmetry. We find a TR-symmetry-broken
QSH phase with C� ¼ �1, indicating that the QSH state
could survive, regardless of the broken TR symmetry, until
the exchange field is beyond a critical value, at which the
bulk band gap closes and reopens, and the system enters a
QAH phase with C� ¼ 1 (or �1). By further inclusion of
an alternating sublattice potential, we show that the tran-
sition from the TR-symmetry-broken QSH phase to an
ordinary insulator state is generally accompanied by clos-
ing of the band gap. Our conclusion extends the conditions
under which the topological QSH state of matter can
happen and opens the door to magnetic manipulation of
the QSH effect.
We begin with the Kane andMele model defined on a 2D

honeycomb lattice [2,5] with the Hamiltonian

H ¼ �t
X
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Here, the first term is the usual nearest neighbor hopping

term with cyi ¼ ðcyi"; cyi#Þ as the electron creation operator

on site i and the angular bracket in hi; ji standing for
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nearest-neighboring sites. The second term is the intrinsic
SOC with coupling strength VSO, where ~� are the Pauli
matrices, i and j are two next nearest neighbor sites, k is

their unique common nearest neighbor, and vector ~dik
points from k to i. The third term stands for the Rashba
SOC with coupling strength VR, and the last term repre-
sents a uniform exchange field of strength g. For conve-
nience, we will set @, t, and the distance between next
nearest neighbor sites all to be unity.

We expand Hamiltonian (1) in the long-wavelength limit
at Dirac points K and K0 to the linear order in the relative

wave vector k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
[2]. The base vectors are chosen

as fcA"; cA#; cB"; cB#g, with A and B standing for the two

sublattices. We consider first the relatively simple case
where g ¼ 0 [2]. It is straightforward to find that, for VR <

VSO, there is a finite energy gap �E ¼ ffiffiffi
3

p ðVSO � VRÞ,
which corresponds to a topological insulating state exhib-
iting the QSH effect. For VR � VSO, the gap vanishes, and
the conductance and valence bands cross at Dirac points K
and K0. The wave functions for the two valence bands near
the Dirac point K are given by

’1;2ð ~kÞ ¼ F1;2ðkÞ
�ie�2i�

ð2E1;2þ
ffiffi
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Here, E1;2 ¼ ð ffiffiffi
3

p
=2Þ½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðVR � VSOÞ2
p � VR� are the

corresponding eigenenergies with subscripts 1 and 2 rep-
resenting two bands originating from the sublattice degrees
of freedom, F1ðkÞ and F2ðkÞ are normalization constants,

and � is the polar angle of ~k in the reciprocal space.
For finite g, the obtained analytic expressions for the

eigenenergies are too long to write here. The energy gap
�E between the conduction and valence bands is plotted in
Fig. 1(a) as a function of jgj=VSO for some different values
of VR=VSO. It is found that, for VR < VSO with increasing
jgj from 0, the gap first decreases; as jgj reaches a critical
value gc, the gap closes at the k ¼ 0 point; and as jgj
further increases, the gap reopens. The critical exchange
energy gc is determined by the condition of touching the
conduction and valence bands. For VR < VSO, we have

gc
VSO

¼
ffiffiffi
3

p
2

�
1�

�
VR

VSO

�
2
�
: (3)

It indicates that gc decreases with increasing VR=VSO. For
VR � VSO, we have gc ¼ 0, and the band gap always exists
for finite g. As will be argued below, the insulating state for
jgj< gc corresponds to the QSH phase, while that for
jgj> gc is also topologically nontrivial with gapless chiral
edge states, exhibiting a quantized charge Hall
conductance.

The definition of spin Chern number Cs relies on a
smooth decomposition of the occupied valence band into

two sectors through diagonalization of the electron spin
operator ŝz ¼ 1

2 �̂z in the valence band [10]. Since ŝz
commutes with momentum, the decomposition can be

done for each ~k separately. To simply show the calculation
procedure for Cs, we first discuss the case of g ¼ 0, where

the wave functions ’1ð ~kÞ and ’2ð ~kÞ for the valence band
have been given in Eq. (2). By diagonalizing the 2� 2

matrix ½h’�ð ~kÞj�̂zj’�ð ~kÞi�with�;� ¼ 1; 2, we obtain two

eigenfunctions of �̂z as

c�ðkÞ ¼ 1ffiffiffi
2

p ½’1ð ~kÞ � ’2ð ~kÞ�: (4)

The minimal spectrum gap �� between the eigenvalues of
�̂z as a function jgj=VSO for different values of VR=VSO is
plotted in Fig. 1(b). The spectrum gap is always nonzero,
and so we can unambiguously calculate the corresponding
spin Chern numbers [10,11]. The spin Chern number
can be defined as a sum over two Dirac points C� ¼
CK� þ CK0�, where for the K point [5,10,11]

CK� ¼ 1

2�

Z
d2kQK�ðkÞ; (5)

with QK�ðkÞ ¼ iêz � h ~rkc�ðkÞj � j ~rkc�ðkÞi. CK0� can
be defined similarly. By using the polar coordinate system,
it is straightforward to obtain QK�ðkÞ ¼ 1

k
@
@k PK�ðkÞ with

PK�ðkÞ ¼ �2F1ðkÞF2ðkÞ. Substituting the expression for
QK�ðkÞ into Eq. (5), we derive CKðK0Þ� to be

CKðK0Þ� ¼ ½PKðK0Þ�ð1Þ � PKðK0Þ�ð0Þ�: (6)

For VR < VSO, numerical calculation yields PKðK0Þ�ð1Þ ¼
� 1

2 and PKðK0Þð0Þ ¼ �1, as shown in Fig. 2(a). It then

FIG. 1 (color). (a) Normalized energy band gap �E=VSO and
(b) spectrum gap of �̂z as functions of jgj=VSO for some different
values of VR=VSO.
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follows CKðK0Þ� ¼ � 1
2 , and the total spin Chern numbers

are C� ¼ �1. Therefore, at g ¼ 0, VR < VSO corresponds
to a topological QSH insulator, as expected.

Nowwe consider the finite g case. As has been discussed
above, the gaps of energy and spin always exist for finite g
except for jgj ¼ gc, so that the spin Chern number can be
defined in the whole parameter plane except for jgj ¼ gc.
Using a procedure similar to that in the g ¼ 0 case outlined
above, we obtain PK�ðkÞ and PK0�ðkÞ for both regions
jgj< gc and jgj> gc. It is found that, for jgj< gc, the
curves of PKðK0Þ�ðkÞ are very similar to that in Fig. 2(a)

with PKðK0Þ�ð1Þ ¼ � 1
2 and PKðK0Þð0Þ ¼ �1 unchanged,

yielding C� ¼ �1. Out of this region, we obtain C� ¼ 1
for g > gc [see Fig. 2(b)] or C� ¼ �1 for g <�gc.
Figure 3 shows a phase diagram determined by spin
Chern numbers in the g=VSO versus VR=VSO plane. There
are three topologically distinct phases characterized by
C� ¼ �1, Cþ ¼ C� ¼ 1, and Cþ ¼ C� ¼ �1, respec-
tively. From our calculation, the boundary between the
different topological phases is just the condition of closing
the band gap.

To study the edge states in each region, we calculate the
energy spectrum of a long ribbon with zigzag edges
and 240 zigzag chains across the ribbon. For jgj< gc,

corresponding to the C� ¼ �1 region in the phase dia-
gram, the energy spectrum is shown in Fig. 4(a). One can
easily distinguish the edge states from the bulk states.
There is a small energy gap in the edge modes as can be
seen from the inset in Fig. 4(a), due to the absence of TR
and inversion symmetries. At a given Fermi level in the
band gap, there exist four different edge states labeled as A,
B, C, and D. Through the analysis of the spatial distribu-
tion of the wave functions, one can find that states A and B
localize near one boundary of the ribbon, while C and D
localize near the other boundary. Take states A and B on
one boundary, for example. From the slope of dispersion
curves at points A and B, it is easy to determine that the two
edge states are counterpropagating. We also examine the
spin polarization of the wave functions, state A being
almost fully spin-up polarized and state B spin-down po-
larized. Therefore, in the C� ¼ �1 region there exist two
counterpropagating edge states with opposite spin polar-
izations on a sample edge, which give rise to no net charge
transfer but contribute to a net transport of spin.
The characteristic of the edge states in the C� ¼ �1

region with g � 0 discussed above is very similar to that
for the QSH phase at g ¼ 0 protected by the TR symmetry
[2]. In particular, they have the same spin Chern number
C� ¼ �1, indicating that they belong to the same topo-
logical class. As a result, we call it the TR-symmetry-
broken QSH phase. For the QSH phase protected by the
TR symmetry, nonmagnetic impurities do not cause back-
scattering on each boundary, and the spin transport in the
edge states is dissipationless at zero temperature. In the
TR-symmetry-broken QSH phase, there is usually a weak
scattering between forward and backward movers, as

FIG. 2 (color). Calculated PKðK0Þ�ðkÞ for VR=VSO ¼ 0:5. The
exchange energy is taken to be (a) g ¼ 0 and (b) g=VSO ¼ 1:2.

FIG. 4 (color). Energy spectrum of a zigzag-edged graphene
ribbon. The parameters are chosen to be VSO ¼ 0:1, VR ¼ 0:05,
and g ¼ 0:03 (a) and g ¼ 0:15 (b). At a given Fermi level in the
band gap there exist four different edge states, which are labeled
as A, B, C, and D.

FIG. 3 (color). Phase diagram determined by the Chern num-
bers in the VR=VSO versus g=VSO plane. The phase diagram in
the half plane of VR=VSO < 0 is mirror symmetric to VR=VSO >
0 and hence not plotted.
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evidenced by the small energy gap in the edge state spec-
trum, leading to a low-dissipation spin transport.

Similar analysis can be applied to the C� ¼ 1 region,
where the total Chern number of the filled bands sum up to
C ¼ 2, corresponding to a QAH phase [13] with Hall
conductivity�xy ¼ 2e2=h. The related edge state spectrum

is shown in Fig. 4(b). It is found that states A andC localize
at one boundary and propagate along the same �x direc-
tion, while states B and D localize at the other boundary
and propagate along the same þx direction. As a result, in
the QAH phase, two edge states at each boundary lead to
spin-up and spin-down currents propagating along the
same direction, yielding a quantized charge conductance.
The symmetry-broken QSH and QAH phases are topologi-
cally distinct. The topological phase transition between
them can occur at jgj ¼ gc, where the band gap just closes.

To further investigate the transition from the TR-sym-
metry-broken QSH phase to an ordinary insulator state, we

include an alternating sublattice potential M
P

i�c
y
i ci into

Hamiltonian (1) with � ¼ �1 for i on sublattice A and B,
respectively. For g � 0 and M � 0, since both the TR and
twofold rotation symmetries are lifted, the two Dirac cones
at K and K0 become asymmetric, leading to an indirect
minimal band gap �E between the two Dirac points. We
find that for a system initially in the QSH phase of jgj< gc
with gc given by Eq. (3), as jMj is increased, the indirect
band gap closes at a smaller critical value jMj ¼ M� and
reopens at a greater critical value jMj ¼ Mþ with M� ¼
gc � jgj. The conduction and valence bands overlap in
between, i.e., �E ¼ 0 for M� � jMj � Mþ. The spin

Chern numbers are calculated from the lattice model by
projecting the two valence bands into two spin sectors, in a
similar manner to that shown above for the continuum
model. (For the phase diagram in Fig. 3, numerical calcu-
lations based upon the lattice model have been performed,
the obtained result being found to agree with that from the
continuum model.) The spin Chern numbers are well de-
fined only in the regions jMj<M� and jMj>Mþ, where
�E > 0. We find C� ¼ �1 for jMj<M� and C� ¼ 0 for
jMj>Mþ. The phase diagram in the g versus M plane
obtained is plotted in Fig. 5(a). The calculated C� and
minimal band gap �E varying along the arrowed dashed
line in Fig. 5(a) are shown in Fig. 5(b) as functions of
M=VSO. A general feature of the phase diagram is that the
transition between the QSH phase with C� ¼ �1 and
ordinary insulator state with C� ¼ 0 is always accompa-
nied by closing of the band gap, which serves as another
signature that the TR-symmetry-broken QSH phase is
topologically nontrivial and distinct from an ordinary
insulator.
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