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Defects provide important insight into the complex electronic and magnetic structure of heavy-fermion

materials by inducing qualitatively different real-space perturbations in the electronic and magnetic

correlations of the system. These perturbations possess direct experimental signatures in the local density

of states, such as an impurity bound state, and the nonlocal spin susceptibility. Moreover, highly nonlinear

quantum interference between defect-induced perturbations can drive the system through a first-order

phase transition to a novel inhomogeneous ground state.
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Heavy-fermion materials exhibit a plethora of puzzling
phenomena which are believed to arise from the
competition [1] between Kondo screening [2] and antifer-
romagnetic ordering. Of particular interest are the non-
Fermi-liquid properties [3] observed in the quantum critical
region of the heavy-fermion phase diagram, whose
microscopic origin is still a topic of debate [4–8]. Recent
ground-breaking scanning tunneling spectroscopy (STS)
experiments [9–11] have shed light on this debate by pro-
viding insight into the electronic and magnetic structure of
heavy-fermion materials, in particular, through quasipar-
ticle interference spectroscopy [9] which utilizes the effects
of defects. These results raise the interesting question of
whether, similar to the high-temperature superconductors
[12], defects can be employed in heavy-fermion materials
to disentangle and spatially resolve their electronic and
magnetic structure.

In this Letter, we demonstrate that defects in heavy-
fermion materials provide an unprecedented opportunity
to differentiate (in real space) between electronic correla-
tions arising from Kondo screening, and antiferromagnetic
correlations between the magnetic moments. In particular,
defects [13,14] induce perturbations in the electronic and
magnetic structure that exhibit characteristically different
spatial patterns and possess experimental signatures in the
local density of states (LDOS) of the conduction band, and
the nonlocal f-electron spin susceptibility, respectively.
The spatial extent of these perturbations grows with the
strength of the magnetic interactions, and thus directly
reflects the degree of correlations. Moreover, nonmagnetic
impurities can induce an impurity bound state, in contrast
to defects in the form of missing magnetic (Kondo) atoms.
Finally, we show that the strongly correlated nature of
these materials manifests itself in highly nonlinear quan-
tum interference effects between defects that can drive the
system through a first-order phase transition to a novel
inhomogeneous ground state. Our findings demonstrate
that defects provide unique insight into the competing
interactions in heavy-fermion materials, thus presenting a
new approach to solving the complex heavy-fermion
problem.

The starting point for our study is the Kondo-Heisenberg
Hamiltonian [5–8]
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With nearest-neighbor hopping t ¼ 0:5E0 and chemical
potential � ¼ �1:809E0 (E0 is an overall energy scale),
one obtains a Fermi wavelength �c

F ¼ 10a0 (a0 is the
lattice constant) of the (decoupled) conduction band with

electron density nc ¼ 0:062. cyr;� (cr;�) creates (annihi-

lates) a conduction electron with spin � at site r. J > 0 is
the Kondo coupling, and SK

r is the S ¼ 1=2 spin operator of
the magnetic (Kondo) atom. Ir;r0 is the antiferromagnetic

coupling between nearest-neighbor Kondo atoms. Its
microscopic origin, direct exchange [6,7] or RKKY-
interaction [1,5,8], is in general not known. However, since
it is irrelevant for the purpose of this study, we consider I
and J to be independent parameters, in accordance with
earlier work [6,7]. Finally, the conduction band and mag-
netic atoms possess identical square lattices with r repre-
senting the location of a Kondo atom and the conduction
band site that it couples to.
In the large-N approach [15–18], SK

r is represented

by pseudofermion operators, fyr;m, fr;m, that obey the

constraint n̂fðrÞ ¼
P

m¼1;...;Nf
y
r;mfr;m ¼ 1 for all r with

N ¼ 2 being the number of fermionic flavors for a spin
operator with S ¼ 1=2. In order to decouple the resulting
Hamiltonian, we introduce the mean fields

sðrÞ¼J

2

X

�

hfyr;�cr;�i; �ðr;r0Þ¼ Ir;r0

2

X

�

hfyr;�fr0;�i: (2)

Here, a nonzero local hybridization sðrÞ between the
conduction electron and the magnetic f-electron states
describes the screening of a magnetic moment, and the
magnetic bond variable �ðr; r0Þ represents the antiferro-
magnetic (spin-liquid) correlations [6,7] between nearest-

neighbor moments. By adding the term
P

r;�"fðrÞfyr;�fr;�
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to the Hamiltonian, the constraint hn̂fðrÞi ¼ 1 can be

enforced through the on-site energy "fðrÞ [19,20]. The

resulting quadratic Hamiltonian can be diagonalized in
real space [assuming periodic boundary conditions for an
(M�M) lattice], allowing a self-consistent calculation of
sðrÞ, �ðr; r0Þ, and "fðrÞ. We study systems well inside the

Kondo screened regime where sðrÞ � 0 for all sites and
fluctuation corrections beyond the mean-field level are
expected to be weak [7,16]. Moreover, a missing Kondo
atom at siteR, a Kondo hole, is described by removing the
spin operator SK

R from the above Hamiltonian [19].
Similarly, replacing a magnetic atom by a nonmagnetic
one corresponds to removing SK

R from the Hamiltonian and

adding the scattering term U0

P
�c

y
R;�cR;�. We consider

lattices with M ¼ 41 since the mean-field parameters
change only weakly (� 0:5%) for M> 41. For a clean
system, our formalism reproduces the mean-field results of
the lattice Kondo-Heisenberg Hamiltonian [6,7,17].

We begin by considering the case of a Kondo hole
located at R ¼ ð0; 0Þ. In Figs. 1(a) and 1(b) we present
spatial plots of the relative change in the hybridization,�s,
and the conduction electron density, �nc, respectively,
between the Kondo lattice with and without a hole. Both
quantities exhibit similar spatial oscillations, whose iso-
tropy and wavelength of �c

F=2 imply that they are deter-
mined by the Fermi surface of the unhybridized conduction
band [Fig. 1(d)]. The oscillations in �s and �nc decay
exponentially and change only very weakly with I=J.
However, their decay length, �s, increases approximately
linearly with s�1 of the clean system [21]. In contrast,
the spatial oscillations of �� shown in Fig. 1(c) extend

predominantly along the lattice diagonal. They reflect the
strongly anisotropic Fermi surface of the hybridized sys-
tem [see Fig. 1(d)], which possesses a large degree of
nesting and a Fermi velocity, v1, along the lattice diagonal
which is about 10 times larger than that along the bond
direction, v2. Thus, the oscillations of �� possess a wave-

length of �h
F=2 ¼ ffiffiffi

2
p

a0, with �h
F being the Fermi wave-

length of the hybridized Fermi surface along the diagonal.
The envelope of these oscillations decays exponentially
away from the Kondo hole with a decay length, ��, that

increases approximately linearly with I=J [21]. This de-
pendence is expected since a Kondo hole can be mapped
onto a localized state outside the conduction band whose
effects on �� or �s necessarily decay exponentially.
Moreover, since the amplitude and spatial extent of ��
increase with I=J, �� is a direct measure for the strength
of the magnetic interaction. A weaker reflection of these
anisotropic oscillations can also be found in �s, demon-
strating the coupling between the system’s electronic and
magnetic degrees of freedom. Finally, we note that the
relation between the spatial structure of �s and �� and
the form of the unhybridized and hybridized Fermi sur-
faces, respectively, holds for all parameters of nc and J that
we have considered so far [21].
The spatial perturbations in sðrÞ possess a direct spec-

troscopic signature in the LDOS of the conduction band,
Ncðr; !Þ, which can be probed via STS [22,23]. Ncðr; !Þ
for an unperturbed Kondo lattice [see Fig. 2(a)] exhibits a
hybridization gap which was recently observed in STS
experiments [9–11]. The peak in the LDOS at the low-
energy side of the gap arises from the van Hove singularity
of the hybridized Fermi sea [green (light gray) arrow in
Fig. 1(d)]. In comparison, the LDOS at the site of the
Kondo hole, R, shows a significant redistribution of
spectral weight from negative to positive energies. To
understand this effect, we note that the screening of a
single Kondo atom leads to an increase in the local electron
density, ncðrÞ ¼

R1
�1 d!nFð!ÞNcðr; !Þ, with nF being the

Fermi function, and hence a shift of spectral weight in

FIG. 1 (color online). Kondo hole system for J ¼ E0 and
I=J ¼ 0:001. Contour plots of (a) �s, (b) �nc, and
(c) ��ðr; r0Þ [shown at ðrþ r0Þ=2]. (d) Large Fermi surface
(black lines) of the unperturbed Kondo lattice (with s ¼
0:0485E0, � ¼ 0:000166E0 and "f ¼ 0:000123E0) arising

from the hybridization of the f-electron and conduction bands
and the small [red (gray) line] Fermi surface of the unhybridized
conduction band.

FIG. 2 (color online). (a) Ncðr; !Þ for the unperturbed Kondo
lattice, and in the Kondo hole system at R ¼ ð0; 0Þ, and
r0 ¼ ð1; 1Þ where �sðr0Þ> 0. (b) The nonlocal f-electron spin
susceptibility, �fðr; r0; !Þ between nearest-neighbor sites in the

unperturbed Kondo lattice, and in the Kondo hole system be-
tween sites r ¼ ð1; 0Þ and r0 ¼ ð1; 1Þ with �� > 0 and between
sites r ¼ ð1; 1Þ and r0 ¼ ð1; 2Þ with �� < 0.
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Ncðr; !Þ from positive to negative energies. A Kondo
hole leads to the opposite effect with a decrease in
ncðRÞ, and the corresponding changes in Nc shown in
Fig. 2(a). Moreover, since for a site with �sðrÞ>0 one
has �ncðrÞ>0 [cf. Figs. 1(a) and 1(b)], the concomitant
redistribution of spectral weight in Ncðr; !Þ is a direct
measure of �sðrÞ. The form of Ncðr0; !Þ at the next-
nearest-neighbor site of the Kondo hole [see Fig. 2(a)]
with �sðr0Þ> 0, exhibits an increase in spectral weight at
negative frequencies, and hence confirms this conclusion.
Note that the (positive) spatial correlation between �s and
�nc for nc < 1 [Figs. 1(a) and 1(b)] turns into an anticor-
relation for nc > 1 [22]. Moreover, the spatial oscillations
in �ðr; r0Þ possess a direct spectroscopic signature in the
nonlocal f-electron spin susceptibility, �fðr; r0; !Þ. In

particular, for nearest-neighbor sites, r, r0, with ��> 0
(��< 0), jIm�fj is enhanced (suppressed) in comparison

to the unperturbed Kondo lattice [see Fig. 2(b)]. These
effects are expected to be observable in the near future
[24,25] via nuclear magnetic resonance techniques [26] or
nanoscale magnetic resonance spectroscopy [27].

The replacement of a Kondo atom at R ¼ ð0; 0Þ by a
nonmagnetic impurity with an attractive scattering
potential, U0 < 0, leads to a form of �s, �nc, and ��
[Figs. 3(a)–3(c)] that possesses distinct differences to those
induced by a Kondo hole. Specifically, it causes a sign
change of �nc, i.e., a site with �nc < 0 for the Kondo hole
case, now has �nc > 0 [cf. Figs. 1(b) and 3(b)]. Since the
same change also occurs in �s and ��, it follows that the
electronic and magnetic correlations are strongly affected
by the spatial redistribution of nc. When the magnitude of
U0 < 0 exceeds a threshold value, jUcj, an impurity bound
state is formed around the impurity. Its spectroscopic
signature is a sharp peak in Ncðr; !Þ inside the hybridiza-
tion gap [see Fig. 3(d)]. With increasing jU0j, the bound
state first emerges at the high energy side of the
hybridization gap and then moves to lower energies [see
Fig. 3(d)]. The bound state is spatially isotropic, and
decays exponentially away from the impurity with a decay
length, �D � 0:65a0 [see Fig. 3(e)]. This small value of �D

demonstrates that the bound state is predominantly formed
by f-electrons since a state arising from conduction elec-
trons would have �D * 60a0 due to the significantly larger
vF. The f-electron nature of the bound state is also
expected since with increasing jU0j, it is pulled into the
hybridization gap from states located at the gap edges,
which are f-electron-like in nature [22]. It also directly
reflects the strong correlations between the light and heavy
bands since it is induced by impurity scattering of conduc-
tion electrons only. In contrast, the spatial oscillations of
Ncðr; !Þ for frequencies outside the hybridization gap are
delocalized [see Fig. 3(f)], and hence arise from conduc-
tion electrons. The existence of a nonzero Uc, whose
sign and magnitude are determined by the particle-hole
asymmetry of the conduction band (here, Uc ¼ �0:62E0),
might explain the disparate physical properties of

heavy-fermion materials containing different types of non-
magnetic impurities [13]. Moreover, for a system with a
soft hybridization gap [22,28], the bound state transforms
into a resonant state, and Uc becomes a crossover scale
[21]. Finally, our description of a nonmagnetic impurity,
and the nature of the induced bound state, differ qualita-
tively from previous work [29] where the impurity was
modeled as a Kondo atom with "fðRÞ ! 1 but sðRÞ � 0.

Within our theoretical model, these assumptions are incon-
sistent, since "fðRÞ ! 1 necessarily implies sðRÞ ! 0.

The strongly correlated nature of the Kondo lattice leads
to highly nonlinear quantum interference of the spatial
perturbations emanating from adjacent Kondo holes. For
a periodic array of Kondo holes embedded in the Kondo
lattice, this nonlinearity leads to a first-order phase tran-
sition with increasing I into a novel inhomogeneous
ground state. The kink in the free energy at Ic, shown in
Fig. 4(a) demonstrates the first-order nature of this tran-
sition (here, we consider a square lattice of Kondo holes
separated by aH ¼ 41a0). The phase transition occurs,
when the spatial perturbations in �, whose spatial extent
increases with I, reach the corners of the unit cell in a
Kondo hole array, where they interfere with each other
nonlinearly and drive the system through a first-order

FIG. 3 (color online). Kondo lattice with a nonmagnetic im-
purity at R ¼ ð0; 0Þ and U0 ¼ �1:0E0, I=J ¼ 0:001. Contour
plot of (a) �s, (b) �nc, and (c) ��. (d) NcðR; !Þ showing the
existence of an impurity bound state. Contour plot of Ncðr; !Þ
at (e) ! ¼ �B, and (f) outside the hybridization gap at
! ¼ 0:02E0.
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transition. The spatial patterns of �s, ��, and �nc for
I > Ic shown in Figs. 4(b)–4(d) are strikingly different
from the ones for I < Ic (see Fig. 1), and reflect the highly
inhomogeneous nature of this state. The similarity of the
patterns for I > Ic and the large amplitude of �nc, suggest
that while the phase transition is driven by quantum
interference between perturbations in �, the resulting
real-space patterns are determined by the redistributed
conduction electron density.

In summary, we demonstrated that defects induce quali-
tatively different spatial patterns of �s and ��, which
provide important insight into the complex electronic and
magnetic structure of heavy-fermion materials. Moreover,
nonmagnetic impurities can induce qualitatively different
effects from those of Kondo holes, such as an impurity
bound state. Finally, strong correlations give rise to non-
linear quantum interference effects that can drive the sys-
tem through a first order phase transition to a highly
inhomogeneous ground state.
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Note added.—Recently, STS experiments by Hamidian
et al. [30] on Th-doped URu2Si2 confirmed the predicted
existence of spatial hybridization oscillations [with a wave
vector twice that of the (unhybridized) conduction band,
see Fig. 1(a)], and of an impurity bound state [see Fig. 3(d)]
[29]. The experimental confirmation of our predictions
represents a significant advance towards understanding

the complex electronic and magnetic structure of heavy-
fermion materials in general, and of disorder effects in
particular [13,14].
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