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Mean-field Bloch bands of a Bose-Einstein condensate in a honeycomb optical lattice are computed.

We find that the topological structure of the Bloch bands at the Dirac point is changed completely by

atomic interaction of arbitrary small strength: the Dirac point is extended into a closed curve and an

intersecting tube structure arises around the original Dirac point. These tubed Bloch bands are caused by

the superfluidity of the system. Furthermore, they imply the inadequacy of the tight-binding model to

describe an interacting Boson system around the Dirac point and the breakdown of adiabaticity by

interaction of arbitrary small strength.
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Inspired by the exciting physics in graphene [1–4], there
have been increasing efforts to study ultracold atoms in a
honeycomb optical lattice [5–11]. The primary reason is
that these ultracold atom systems offer more controlling
flexibilities over graphene [12,13]. For example, with this
hexagonal ultracold atom system, one can readily change
the lattice strength, tune the atomic scattering strength
with Feshbach resonance, and load either bosons or fer-
mions or even a mixture of bosons and fermions in the
lattice. There have already been efforts to study conical
diffraction [6–8] and observe quantum phases with ultra-
cold bosons in a honeycomb lattice [9]. This controlling
flexibility will not only offer deeper insight into the gra-
phene properties but also open up windows for physics
beyond graphene.

In this Letter we provide an insight into the interplay
between superfluidity and Dirac dynamics by studying a
Bose-Einstein condensate (BEC) in a honeycomb optical
lattice. To showcase the interplay, we compute the lowest
Bloch bands for this BEC system. We find that the topol-
ogy of the Bloch bands around the Dirac point is com-
pletely altered by arbitrary small atomic interaction: an
intersecting tube structure appears and the Dirac point is
turned into a closed curve. We show that the topological
change can be viewed as a permanent fingerprint left in the
Bloch bands by superfluidity. As the interaction does not
change the Dirac point structure in the tight-binding model,
this topological change suggests that the tight-binding
model is insufficient to describe the bosonic dynamics in
a honeycomb lattice no matter how deep the lattice is. At
the same time, these tubed bands imply the breakdown of
adiabaticity by arbitrary small atomic interaction. A fea-
sible experimental scheme is suggested to observe this
phenomenon.

The honeycomb optical lattice can be experimentally
realized by three interfering traveling laser beams [14,15],
and is described mathematically by

VðrÞ ¼ V0½cosðb1 � rÞ þ cosðb2 � rÞ þ cosððb1 þ b2Þ � rÞ�;
(1)

where the reciprocal unit vectors b1 ¼ 2�ð ffiffiffi
3

p
; 1Þ=ð3aÞ and

b2 ¼ 2�ð� ffiffiffi
3

p
; 1Þ=ð3aÞ with a ¼ 2�L=3

ffiffiffi
3

p
. �L is the

wavelength of the laser beams. We are interested in the
superfluid regime, where the BEC system can be well
described by the Gross-Pitaevskii (GP) equation

i@
@c

@t
¼ � @

2

2m
r2c þ VðrÞc þ 4�@2as

m
jc j2c ; (2)

withm the mass of particle and as the scattering length. For
numerical computation, the above equation is made dimen-
sionless by normalizing the wave function and choosing
6ER as energy unit with ER ¼ @

2k2L=2m, @=6ER as the time

unit, and
ffiffiffi
3

p
a=2� as the length unit. The scaled nonline-

arity and potential strength are denoted as c and v,
respectively.
We compute the Blochwave solutions of the GP equation,

which are of the form c kðrÞ ¼ P
m;ncmne

iðkþGmnÞ�r with

Gmn ¼ mb1 þ nb2, and the corresponding nonlinear
Bloch bands. The bands along the high-symmetry points
are plotted in Fig. 2. Compared to the linear bands in Fig. 2
(a), we see that the nonlinear bands in (b) have a similar
overall structure. However, the part around the Dirac point
appears to be modified by nonlinearity. When it is enlarged,
we find in (c) that the two linear bands have split into four
bands. As a result, two more additional crossing points D1

and D2 appear while the Dirac crossing D is shifted away
from point K. This feature is also clear in (d), where the
Bloch band along the direction 30� off the K-M axis is
plotted. We have also plotted the nonlinear Bloch band near
point M in Fig. 4(b) where we see a loop structure, very
similar to the BEC Bloch bands in one dimensional optical
lattice [16–18].
The full BEC Bloch bands near point K are plotted in

Fig. 3(a). The complicated Bloch bands consist of three
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‘‘tubes,’’ which intersect at point K [see Fig. 3(b)] and are
sandwiched by two Dirac cones. One of the tubes is shown
in Fig. 3(c): it lies along the M-K direction and it has a
wedged cross section with an area increasing monotoni-
cally from M to K. Figure 3(d) shows how two tubes
intersect. The two white dots mark the top and bottom
tips of this intersection and correspond toD1 andD2 points
in Figs. 2(c) and 2(d). The green dots indicate part of a
closed curve, which results from the intersection of the
three tubes; the shifted Dirac pointD in Figs. 2(c) and 2(d)
is one of the points on this closed curve. This shows that the
Dirac point is turned into a closed curve by the interaction.
The three tubes become smaller as the interaction strength
c gets weaker. In particular, as c decreases, the tube will
disappear first at point M and start shrinking toward point
K. However, surprisingly, the tubes never disappear com-

pletely atK as long as c is not zero. This indicates that the
tubed Bloch bands appear for arbitrary small interaction.
Note that the tips of the Dirac cones in Fig. 3(a) have only
triangular symmetry, and do not have the cylindrical sym-
metry as in the linear case.
The tubed structure can be viewed as a fingerprint left in

the Bloch bands by the superfluidity of the BEC systems.
Assume that we have a mass flow of boson particles, which
is represented by plane wave eik�x with k at the Brillouin
zone (BZ) edge pointM. We now slowly turn on an optical
lattice of small lattice strength. For free bosons, the flow is
stopped by the Brag scattering, the plane wave assumes the
form of sinðk � xÞ. In the energy band, this is reflected by
that the crossing of two plane wave energy bands at M is
replaced by a gap as seen in Fig. 4(a). In the nonlinear case,
the situation can be very different: when the interaction is
strong so that the superfluid critical velocity is larger than
jkj, the small optical lattice, which can be regarded as
perturbation, should not stop the superflow. This implies
that the wave function describing the flow should still
resemble the plane wave eik�x, and at the same time, the
crossing of plane wave energy bands should remain un-
changed. This is confirmed by our numerical calculation
shown in Fig. 4(b). When this superfluidity argument is
applied to other points along the BZ edge, we should have a
tubed structure seen in Fig. 3. In other words, we can view
the tubed structure as the fingerprint left in the BEC Bloch
bands by superfluidity. For this hexagonal BEC system,
this fingerprint stays as long as c is not zero.
We emphasize that the appearance of the tubed structure

in the BEC Bloch bands for arbitrary small c is a unique
feature for a honeycomb lattice: In one dimensional lattice
[16–22] and two dimensional square lattice [23,24], the

FIG. 3 (color). (a) The lowest nonlinear Bloch bands around
point K. They consist of three intersecting ‘‘tubes,’’ which are
sandwiched by two Dirac cones. (b) Three intersecting ‘‘tubes,’’
which are aligned along the three K-M axes; (c) one of three
‘‘tubes,’’ whose cross-section area increases monotonically from
M to K; (d) the cross section of two intersecting ‘‘tubes.’’ The
white dots are D1 and D2 points in Fig. 2(c) while the green dots
indicate a closed curve where the D point in Fig. 2(c) belongs.
v ¼ 0:1, c ¼ 0:1.

FIG. 2. Bloch bands along the high-symmetry points. (a) The
linear case. c ¼ 0, v ¼ 0:1. D marks the Dirac point at point K.
(b) The nonlinear case. c ¼ 0:1, v ¼ 0:1. (c) The enlarged
rectangle part in (b). There appear two additional crossing points
D1 and D2 while the linear Dirac point D is shifted away from
K. (d) The band structure along the direction represented by the
dashed line in Fig. 1(b).

FIG. 1 (color online). (a) Contour map of the hexagonal po-
tential in Eq. (1). The potential well is represented in red and the
barrier in blue. The unit vectors are marked as a1 and a2. (b) Unit
cell in the reciprocal space with unit vectors b1, b2 and the high-
symmetry points �, M, and K.
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looped or tubed nonlinear structure in the Bloch bands
appears only when c is bigger than a threshold value.
This unique feature has a profound implication when the
tight-binding limit is considered. As is well known, when
the lattice is deep, it is believed that the system should be
well described by a tight-binding model [25]. However, as
shown below, the tight-binding model is not an adequate
approximation for a BEC in a honeycomb lattice no matter
how deep the lattice is.

Following the usual procedure [10,25], we write the

bosonic field as a sum over the two sublattices c ¼P
~ac ~auð~r� ~aÞ þP

~bc ~buð~r� ~bÞ, where uð ~rÞ is the

Wannier function and ~a and ~b are lattice vectors in the
two sublattices, respectively. Then the tight-binding
Hamiltonian for our BEC system is

H ¼ �X
h ~a; ~bi

J ~�
ðc �

~ac ~b þ H:c:Þ þU

2

�X
~a

jc ~aj4 þ
X
~b

jc ~bj4
�
;

(3)

where J ~� is the hopping constant with ~� indicating three

different neighbors and U is the on-site interaction propor-
tional to c. The ground state energy of this Hamiltonian is

E ¼ �j�1j þU=2, where �1 ¼ �P
~�J ~�e

ik� ~�. This shows
that the interaction has only a trivial effect on the band
structure, lifting the Dirac bands by a constantU=2. This is
very different from the GP equation result, where arbitrary
small interaction can destroy the Dirac bands. This surpris-
ing difference implies that the tight-binding model cannot

describe well the BEC system in a honeycomb lattice no
matter how deep the lattice is.
After careful analysis, we find that the inadequacy of the

tight-binding model may be caused by the inappropriate
choice of Wannier functions. Let us consider the linear
case where J ~�1

¼ J ~�2
¼ J and J ~�3

> J [26]. Its Bloch

bands around point K are plotted as solid lines in Fig. 5,
where one immediately notices that the Dirac point is
shifted as we also see in Fig. 2. To have a different J ~�3,

one needs a set of Wannier functions which have no three-
fold rotational symmetry. This seems to suggest that the
choice of Wannier functions, which are used to obtain the
tight-binding model, depends on the state of the system.
Conventionally, the choice of Wannier functions is inde-
pendent of the state of the system. If this were indeed the
case, one would expect to have for another state a set
of Wannier functions, which yield J ~�1

¼ J ~�3
¼ J and

J ~�2 > J. The Bloch bands for this case are plotted as

dashed lines in Fig. 5, where the band splitting at point
K is another feature seen in Fig. 2. To fully establish this
view, more computation needs to be done and will be
carried out in the future. One possible way of doing the
computation is to use the method proposed in Ref. [27].
Interestingly, the tubed structure shown in Fig. 3 has

another important physical implication, the breakdown of
adiabaticity by nonlinearity. In the linear case, the state of
the system can adiabatically follow the lower left band to
the upper right band by passing through the Dirac point. In
the nonlinear case, this adiabatic following is broken. This
can be seen clearly in Fig. 2(d): the system can follow
adiabatically passing pointD till the tip of the band, where
no more band to follow and the adiabaticity is broken. This
type of breakdown of adiabaticity is also implied in the
loop structure in one dimensional optical lattice. Such an
interesting effect has not only been generalized to general
nonlinear quantum systems [28] but also been observed
experimentally with ultracold atoms [29]. The uniqueness
of the hexagonal system is that the breakdown of adiaba-
ticity occurs for arbitrary small interaction whereas it
happens only when the nonlinearity is bigger than a thresh-
old value in the 1D system or other previously studied
systems.
Note that this interesting phenomenon is not limited to

the system of BEC in a honeycomb lattice. It can be seen
clearly when we approximate this BEC system at point K
with a three-mode model. The three-mode model is

i
@

@t

�1

�2

�3

0
BB@

1
CCA ¼

�j�1j2c� �kx
4 �

ffiffi
3

p
�ky
4 v=2 v=2

v=2 �j�2j2cþ �kx
2 v=2

v=2 v=2 �j�3j2c� �kx
4 þ

ffiffi
3

p
�ky
4

0
BBBB@

1
CCCCA

�1

�2

�3

0
BB@

1
CCA; (4)

where �kx and �ky denote how much the Bloch wave
number k deviates away from K. This three-mode model

can also describe a BEC in a triple-well potential, where
the three wells are arranged in a triangular geometry

FIG. 4. The lowest Bloch bands for a honeycomb lattice at the
�-M-� branch. (a) Free boson; (b) BEC. The solid curves are
Bloch bands while the dashed curves are the energy of the plane
waves.
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with the depth of each well adjustable [30,31]. It should
also be realizable in experiment with waveguide systems
[32–34] and other nonlinear optical systems. This shows
that this breakdown of adiabaticity by arbitrary small
interaction is general and can happen in a wide range
of systems.

Inspired by the experiment in [29], we here propose a
scheme to realize the above mentioned triple-well configu-
ration. The procedure is as follows. At first, a triangular
lattice is formed by three lasers. The triangular potential can

be described by Vtri ¼ V0½cosðxþ yffiffi
3

p Þ þ cosð�xþ yffiffi
3

p Þ þ
cosð2yffiffi

3
p Þ� with V0 < 0. The second step is to form the triple-

well systems by adding a rectangular lattice Vrecð�;’Þ ¼
V1½cosðx=2þ �Þ þ cosðy= ffiffiffi

3
p þ ’Þ� (V1 > 0). As �, ’

changes, the second optical lattice can not only break the
triangular lattice into a series of independent triple-well
systems but also change the depth of each well. One should
be able to demonstrate the breakdown of adiabaticity by
arbitrary small interaction with this triple-well system,
similar to the experiment done in Ref. [29].

In sum, we have computed the BEC Bloch bands in a
honeycomb optical lattice. Our results show that a tube-
intersecting structure can emerge between the up and down
Dirac cones for arbitrary small interaction. This structure
has two interesting physical implications: (1) the tight-
binding model cannot describe adequately the BEC in a
honeycomb lattice even when the lattice is very deep; (2)
the adiabaticity can be broken down by arbitrary small
interaction in certain systems. For the latter, we have
proposed an experimental scheme to observe it.
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