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We describe a method to extract from experimental data the important dynamical modes in spatio-

temporal patterns in a system driven out of thermodynamic equilibrium. Using a novel optical technique

for controlling fluid flow, we create an experimental ensemble of Rayleigh-Bénard convection patterns

with nearby initial conditions close to the onset of secondary instability. An analysis of the ensemble

evolution reveals the spatial structure of the dominant modes of the system as well as the corresponding

growth rates. The extracted modes are related to localized versions of instabilities found in the ideal

unbounded system. The approach may prove useful in describing instability in experimental systems as a

step toward prediction and control.
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Identification of instabilities plays a crucial role in our
understanding and description of the dynamics of many
nonlinear physical, biological, and chemical systems
driven out of equilibrium [1]. In particular, quantitative
description is essential for predicting and/or controlling the
evolution of such systems, with weather prediction being a
prime example. While linear stability analysis of global
disturbances in an idealized, infinite system may provide a
description of dynamics and pattern selection, this ap-
proach fails for imperfect patterns (e.g., far from onset)
and in strongly confined systems. Despite recent numerical
advances [2–4] in computing the spatial structure and
dynamics of localized disturbances in weakly chaotic
patterns, no general approach has been developed for ex-
tracting such dynamical information directly from experi-
mental measurements.

In this Letter, we present such an approach, illustrating
how dynamical degrees of freedom can be extracted from
experiments conducted on the prototypical Rayleigh-
Bénard convection system. Specifically, we determine the
spatial structure and evolution of the dominant dynamical
degrees of freedom by analyzing the response of the system
to an ensemble of localized perturbations about the sta-
tionary straight roll state. In each case, we find the dynam-
ics are dominated by a small number of spatially localized
modes. We also observe slowing-down of the dynamics
and thus quantify the distance to a particular instability
boundary in terms of perturbation lifetimes. The spatial
structure of the extracted modes is found to be consistent
with the classification of secondary instabilities of spatially
infinite perfect patterns. We expect the applicability of the
outlined approach to extend to time dependent and/or
spatially irregular patterns.

The convection experiments were performed with a
layer of sulfur hexafluoride (SF6) gas of depth d ¼ 700�
10 �m compressed to 14:5� 0:1 bar [5]. The gas layer
was confined laterally to a 25 mm� 15 mm rectangular

region by filter paper sidewalls chosen to match the fluid
conductivity. The layer was bounded from above by a
water-cooled sapphire window and from below by a carbon
disulfide (CS2)-cooled zinc selenide (ZnSe) window;
the temperatures of these windows were regulated to
�0:05 �C. Experiments were performed with �T ¼
24:00 �C and temperature differences of 2:92 �C and
4:80 �C. Convection was visualized using the shadowgraph
method by illuminating from above and imaging the light
reflected from the ZnSe surface at the bottom of the gas
layer.
SF6 is a greenhouse gas (it absorbs infrared light

strongly); we use this property to optically apply controlled
thermal disturbances both to manipulate the global con-
vective flow as well as impose localized perturbations.
An infrared (IR) beam from a CO2 laser (10:6 �m
wavelength) is focused to approximately 200 �m in di-
ameter and strikes the gas layer from below (after passing
through the IR-transparent CS2 coolant and ZnSe window).
The beam is steered by two computer-controlled, gold-
plated servo mirrors that rotate about orthogonal axes,
providing the ability to direct the IR light toward any point
over the cell domain. Figure 1 shows the experimental
setup. The extinction length of the beam in the SF6 is
<10 �m [6], less than 2% of the cell depth, so the ab-
sorbed beam induces a highly localized heating that takes
place very near the bottom of the gas layer. Software
developed in-house works with a commercial program
(LD2000) to synchronize laser power with mirror rota-
tions. The strong absorption and rapid scanning allow for
flow manipulation on a time scale much faster than the
typical dynamical time scale (vertical thermal diffusion
time of 2.7 s). This technique improves on previous at-
tempts to manipulate convection patterns optically [7,8] by
introducing dynamic pattern control while minimizing un-
wanted disturbances such as thermal inertia effects from
perturbative boundary heating.
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A pattern of straight rolls with wave number q was
imposed by sending one line of laser light into the cell at
the desired location of hot up flow for each roll, at 1 s
intervals. After drawing a full set, the process was repeated
until the straight roll pattern was established in about 30 s.
To minimize sidewall effects, the pattern was imposed in
the central portion of the cell, 2 wavelengths from either of
the sidewalls in the wave vector direction. This provides
room for 7–9 interior roll pairs.

Secondary instabilities of the straight roll state are pre-
dicted to define the boundaries of a stability (Busse) bal-
loon in ð�; qÞ space at fixed Prandtl number; crossing one
of these instability thresholds results in a reorganization of
the pattern [9]. Here, � ¼ ðR� RcÞ=Rc is the reduced
bifurcation parameter that measures the distance from
onset of the primary instability of the purely conducting
state. Figure 2 shows the Busse balloon for the spatially
unbounded system at the conditions of our experiments
( Pr ¼ 0:84). The Busse balloon is conventionally calcu-
lated assuming an infinite system; we may expect the
thresholds for the localized instabilities in a bounded sys-
tem to take place at slightly different parameter values.
Nonetheless, the balloon provides a useful reference as
different areas in the parameter space are visited, and the
dynamics of the dominant modes of the system can be
expected to depend on the distances between a given ð�; qÞ
point and the various instability boundaries.

Pattern manipulation allows us to use both � and q as
control parameters. The initial pattern wave number was
chosen to be within the stable band. Following the initial
imprinting, actuation is restricted to only the two outermost
rolls between which the straight roll pattern is confined.
The pattern wave number is adjusted by moving the
positions of these outer rolls toward or away from one
another; the interior pattern equilibrates on a time scale

of approximately 50tv for our domain size. A closed-loop
feedback algorithm constantly analyzes images for devia-
tions of the two boundary roll positions from desired
locations and adjusts laser power accordingly.
Sufficiently close to a particular instability boundary, the

spatial modes of that instability are weakly damped and
can therefore be excited by small perturbations to the base
state (straight rolls). Each perturbation takes the form of a
brief (about 100 ms) well-localized laser pulse directed to a
single location in the convection pattern. We estimate that
the applied heating results in an initially axisymmetric
disturbance of diameter �d=2.
We first probed the pattern response to perturbations for

different q near the high-wave-number instability bound-
ary, with fixed � ¼ 0:60. Upon perturbation, two adjacent
up-flow regions appear to bend toward one another and
then relax back to their initial locations; a snapshot of a
typical response is shown in the inset of Fig. 1. The
disturbance decay is slower at higher q, which suggests
using the perturbation lifetime as a measure of distance
from instability. The perturbation lifetime is measured
most easily from the apparent local roll separation as a
function of time. This signal typically displays a large
spike immediately after the perturbation, followed by ex-
ponential decay to the original value; analysis is restricted
to this period of linear decay.
We find that the disturbance decay rate decreases line-

arly over an order of magnitude with increasing q (see the
inset in Fig. 2). The decay-rate distribution shows the
expected slowing down of the dynamics near the instability
and indicates the critical value qc ¼ 3:00 for the localized
skew-varicose instability. Note that this value is slightly
smaller than that of the global instability predicted from
analysis of an infinite domain (qc ¼ 3:15), reflecting the
effect of spatial localization. The low amount of scatter in
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FIG. 2 (color online). Stability balloon at Pr ¼ 0:84 showing
various instabilities (CR, cross roll; ECK, Eckhaus; SV, skew
varicose; OSC, oscillatory) of the straight roll state along with
the parameters at which the experimental data were taken for the
three data sets. DI ¼ ð0:60; 2:85Þ, DII ¼ ð1:50; 2:40Þ, and DIII ¼
ð0:60; 2:20Þ. The inset plot shows the disturbance decay rate
(s�1) as a function of wave number q at fixed � ¼ 0:60.

FIG. 1 (color online). Experimental setup includes a shadow-
graph visualization as well as a system for optical actuation.
Insets are observed responses to local perturbations at different
parameter values. These disturbances represent the local version
of the skew-varicose and cross-roll instabilities, respectively, of
the unbounded system.
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the decay-rate plot illustrates the high degree of reproduc-
ibility of the imposed perturbations.

In order to excite all dominant localized modes, pertur-
bations were applied at a grid of equally spaced locations
across a wavelength of the pattern. All other perturbations
are related to this set through the symmetries of the system
(translational invariance in the direction perpendicular to
the wave vector, periodicity in the direction of the wave
vector), as long as the disturbances are sufficiently well-
localized and not near the physical boundaries. Each set
contains perturbations at 12 distinct locations; in all experi-
ments, the spatial extent of the laser is of order 10% of the
pattern wavelength, so there is no benefit from a finer
partition.

Shadowgraph images capture the evolution of an im-
posed disturbance and thus contain snapshots of the com-
posite structure of the excited modes over time. During the
perturbation decay, there exists a period of time over which
the dynamics of the disturbance can be described by a
linear evolution operator; we seek to represent this evolu-
tion operator by computing its matrix elements in a sub-
space spanned by a set of slow modes extracted from the
shadowgraph images. We first subtract the stationary
straight roll pattern from all images after the perturbation.
The images are then spatially windowed and Fourier fil-
tered. A Karhunen-Loève (KL) decomposition of differ-
ence images representing perturbations 2–5 s after each
initial disturbance provides a set of basis modes. All per-
turbations are then projected onto the subspace spanned by
this basis. Note that the typical implementation of the KL
decomposition uses time averaging [10], whereas we em-
ploy an ensemble average over different initial conditions.
We limit our embedding dimension to a small (usually
three or four) number of modes that capture 90% of the
power of the KL eigenvalue spectrum.

Let us denote the disturbance following an initial per-
turbation b0, expressed in a low-dimensional basis. After
some time T, this state has evolved to bT . ThenUb0 ¼ bT ,
where U is the evolution operator. Using an ensemble of
initial conditions we define

B0 ¼ ½b0
1jb0

2j � � � jb0
M�;

and similarly,

BT ¼ ½bT
1 jbT

2 j � � � jbT
M�:

This gives the overdetermined (least-squares) problem
for the evolution operator UB0 ¼ BT , which is solved by
U ¼ BTðB0Þ�1, where the reciprocal of B0 is taken to refer
to the generalized inverse of the nonsquare matrix.

During linear decay, each eigenmode decays at a char-
acteristic rate, so we can also write Uei ¼ expð�TÞei,
where ei are the eigenvectors, and the eigenvalues �i are
related to the growth rates by �i ¼ expð�iTÞ.

The discrete translational symmetry of the straight roll
pattern implies that a superposition of a well-localized

eigenmode with a copy of itself translated over an integer
number of wavelengths is an eigenmode with the same
growth rate. Hence, there exist many possible representa-
tions of each eigenmode. Reduction of the dynamics using
the symmetries of the base pattern is useful for both
unbounded and bounded systems.
In particular, all disturbances can be decomposed in

terms of symmetries related to a roll pair. By defining
two symmetry planes, one coinciding with the center of
up-flowing hot fluid, the other at the center of adjacent cold
fluid, we can define four symmetric versions of every
initial disturbance, each even or odd about the two sym-
metry planes. Each of the corresponding four subspaces is
invariant: evolving disturbances retain their symmetry.
The entire collection of initial and final conditions ex-

tracted from experiment was decomposed using these
symmetries, producing four independent ensembles. All
eigenmodes extracted from the four ensembles are eigen-
modes of the system, but in the cases when multiple
eigenmodes share an eigenvalue (growth rate) we eliminate
redundant representations by computing the most spatially
localized eigenmode structure.
We estimate the uncertainty in the growth rates to be less

than 10%. This allows one to group all extracted modes
and define the fundamental mode as the most-localized
structure with a particular growth rate. The fundamental
modes were computed by minimizing the p-norm (p < 2)
among linear combinations of all modes (and their trans-
lated copies) in each group. Here the p-norm of a vector v,

with ith component vi, is defined as ðPiv
p
i Þ1=p. The sym-

metries imply that all extracted modes in each group can be
represented as linear superpositions of the fundamental
mode along with its translated and/or reflected copies.
We verified that this is indeed the case as such representa-
tion was accurate, with mutual projection >0:94.
The first ensemble was produced at the point DI of the

parameter space (see Fig. 2). The two dominant modes are
shown in Fig. 3. As the lifetime measurements indicate, the
least-stable mode (�1 ¼ �0:13 s�1) tended to be excited
from perturbations to cold fluid. Note, however, that while
the structures excited from these disturbances are even

a b

FIG. 3 (color online). (a) The fundamental dominant and
(b) subdominant mode extracted at DI. Dashed lines mark the
approximate locations of the hot fluid of the underlying base
state; cold fluid lies between the dashed lines.
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about the down-flow symmetry plane, the most-localized
representation of this mode does not obey that symmetry.
The subdominant mode (�2 ¼ �0:70 s�1) tended to be
excited from perturbations to hot fluid.

A second set of perturbations at high q was performed at
DII, with � increased relative to DI. Again, two modes are
extracted: �1 ¼ �0:15 s�1 and �2 ¼ �0:55 s�1. Mutual
projections of the modes extracted at DI and DII indicate
that the spatial structure of the two dominant modes re-
mains unchanged (after scaling by the wavelength)
between these two locations. There is also, in both cases,
a large separation between the two growth rates. This
suggests we can identify the dominant mode [Fig. 3(a)]
as the one representing the secondary instability at the high
wave number boundary. Its structure is consistent with a
skew-varicose-type instability.

We also created an ensemble of perturbations to pattern
with low q, at DIII. Again, two modes were extracted, with
growth rates �1 ¼ �0:20 s�1 and �2 ¼ �0:27 s�1.
Shown in Fig. 4, the spatial structure of the dominant
mode does not resemble any of the previously extracted
modes, while the subdominant mode resembles the sub-
dominant mode extracted at bothDI andDII. The closeness
of the growth rates is consistent with the existence of two
low-q instability types of the unbounded system that occur
at very nearly the same parameter values, namely, the
Eckhaus and cross-roll instabilities (see the Busse balloon
in Fig. 2). The dominant mode is again excited from
perturbations to cold fluid; this is not surprising, as heating
of cold fluid tends to reduce the amplitude of the saturated
state. We find experimentally that sufficiently strong per-
turbations of this kind result in the growth of rolls perpen-
dicular to the base pattern. We therefore identify the
dominant low-wave-number mode with the localized
cross-roll instability and the subdominant mode with the
localized Eckhaus instability.

Further experiments are needed to explore the applica-
bility of this approach to states exhibiting more complex
dynamics. One such state, occurring in gas convection
experiments with Pr � 1, is the spatiotemporally chaotic
state known as spiral defect chaos (SDC) [11]. While there
exists a bistability between stationary straight rolls and

SDC [12] over the parameter range of the experiments
reported here, localized instability in the straight roll pat-
tern introduces defects which tend to lead to a disordered
pattern, thus providing a mechanism for the transition to
chaotic behavior. Additionally, it was determined in a
numerical study [2] that the chaotic dynamics of SDC
are largely driven by the creation or annihilation of defects
occurring in straight roll regions of the pattern. We expect,
therefore, that spatially localized modes are dynamically
important in both the transition to and the driving of
chaotic behavior, suggesting a natural extension of our
experimental approach to investigations of more complex
convection patterns. Moreover, the outlined procedure is
general enough to be used in a variety of other dynamical
systems, so long as an appropriate means of system actua-
tion can be developed. In addition to being of fundamental
interest and of use in increasing predictive power, knowl-
edge of the modes of instability could be particularly
advantageous in system control, where small, controlled
perturbations could be used to guide system dynamics [13].
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FIG. 4 (color online). (a) The fundamental dominant and
(b) subdominant mode extracted at DIII.
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