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We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of

photon blockade under single-photon strong coupling conditions. We present an intuitive interpretation of

this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation

spectrum and the two-photon correlation function gð2Þð0Þ. Our results predict the appearance of non-

classical photon correlations in the combined strong coupling and sideband resolved regime and provide a

first detailed understanding of photon-photon interactions in strong coupling optomechanics.
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The implementation of strong optical nonlinearities on a
single-photon level is one of the central goals in quantum
optics with a significant practical relevance for optical
computation [1], quantum information processing [2], or
photonic quantum simulation schemes [3]. The prototype
system that has been widely studied in this context is cavity
QED [4], where under strong coupling conditions effective
photon nonlinearities result from the hybridization be-
tween the optical field and a single atom. Recently, a
fundamentally different type of light-matter interaction
has attracted a lot of attention, which is the radiation
pressure coupling between light and mechanical motion
studied in optomechanical systems (OMS) [5]. In most
experiments today, radiation pressure forces are fairly
weak and nonlinear optical effects [6,7] occur in the clas-
sical, high-photon number regime. While in this regime
linearized photon-phonon interactions [8,9] are investi-
gated for cooling [10] or the mapping of photonic states
onto mechanical motion [11,12], this type of coupling
cannot by itself produce a quantum nonlinearity for light.
However, strong optomechanical interactions with single
photons in analogy to cavity QED are within reach of new
generations of nanofabricated OMS [13] or superconduct-
ing devices [8] and are already nowadays accessible in
analogous cold atom experiments [14,15]. This could
open up a completely new route towards nonlinear quan-
tum optics, which avoids single-atom strong coupling and
trapping requirements and where instead simply the quan-
tized motion of a polarizable medium provides a source for
nonclassical states of light.

In this Letter, we study OMS in the regime where the
single-photon coupling g0 is comparable to the cavity
decay rate �. Compared to previous studies [16–20], we
here focus explicitly on the consequences of strong cou-
pling for the quantum statistics of light, with the aim to
identify the mechanism for photon-photon interactions in
this system and under which conditions such effects could
be observed in experiments. To do so, we consider a
weakly driven OMS as shown in Fig. 1 and evaluate the

two-photon correlation function gð2Þð0Þ. This quantity

provides a direct experimental measure for nonclassical

antibunching effects, gð2Þð0Þ< 1, and for gð2Þð0Þ ! 0 in-
dicates a full photon blockade [21–23], where strong
interactions prevent multiple photons from entering the
cavity at the same time. We show that apart from g0, and
in contrast to cavity QED, strong coupling effects in OMS
depend crucially on the relation between � and the me-
chanical frequency!m, and signatures of nonclassical light
appear only under quite stringent conditions � < g0; !m.
However, this regime is within reach of experiments
[13–15] where the observation of photon blockade would
provide the essential ingredient for potential applications
of OMS as a quantum nonlinear device.
Model.—We consider a setup as shown in Fig. 1, where

the frequency of an optical cavity mode is modulated by
the motion of a mechanical oscillator. The cavity is driven
by a weak laser field, and the photon statistics of the
transmitted light is analyzed by using photon-counting
techniques [23]. In a frame rotating with the laser fre-
quency !L, the Hamiltonian for the OMS is (@ ¼ 1)

Hop ¼ Hm � �0c
ycþX

k

gkðbyk þ bkÞcycþ iEðcy � cÞ;

(1)

where c is the bosonic operator for the cavity mode, E is the
driving strength, and �0 ¼ !L �!c is the detuning of the
laser from the bare cavity frequency !c. The bosonic
operators bk represent the mechanical eigenmodes of
the system which evolve under the free Hamiltonian

FIG. 1 (color online). Setup for the detection of photon block-
ade effects in OMS. The OMS is weakly excited by a coherent
laser field, and the statistics of the output field is inferred from
photon coincidence measurements.
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Hm ¼ P
k!kb

y
k bk and couple to the cavity with a strength

gk. In a general device the bk’s account for different vibra-
tional modes of the resonator as well as mechanical modes
of the support, and the system-specific details of the OM
interactions are summarized by the spectral density
Jð!Þ ¼ �

2

P
kg

2
k�ð!�!kÞ [24]. For concreteness, we

will below focus explicitly on the case

Jð!Þ ¼ !

Q

�2

ð!2=!2
m � 1Þ2 þ!2=ð!2

mQ
2Þ ; (2)

which models a mechanical mode of frequency !m

coupled to an Ohmic bath. The dimensionless parameter
� ¼ g0=!m is chosen such that in the limit of a high
mechanical quality factorQwe recover the standard model
for a single-mode OMS [5] with a coupling constant g0.

The cavity field is coupled to the electromagnetic
vacuum modes of the environment, and in the limit of a
single-sided cavity we model the resulting dissipative dy-
namics by a quantum Langevin equation:

_cðtÞ ¼ i½Hop; cðtÞ� � �cðtÞ � ffiffiffiffiffiffi
2�

p
finðtÞ: (3)

Here � is the cavity field decay rate and finðtÞ a
�-correlated noise operator. Photon counting and photon
coincidence measurements of the cavity output field

foutðtÞ ¼ finðtÞ þ
ffiffiffiffiffiffi
2�

p
cðtÞ provide information about the

photon statistics of the cavity field [23].
Displaced oscillator states.—For the observation of

photon blockade effects, we are interested in the regime
of low photon numbers where the driving field E only
weakly perturbs the OMS. Therefore, to proceed it is
convenient to change to a displaced oscillator representa-
tion Hop ! UHopU

y, which diagonalizes Hop in the limit

E ! 0 and is defined by the unitary transformation U ¼
e�iPcyc and P ¼ i

P
kðgk=!kÞðbyk � bkÞ. We obtain

Hop ¼ Hm � �cyc��gc
ycyccþ iEðcye�iP � eiPcÞ;

(4)

where we have introduced � ¼ �0 þ �g and a photon

nonlinearity �g ¼ 2
�

R1
0 d!Jð!Þ=!, where �g ¼ g20=!m

for the single-mode model defined in Eq. (2).
The origin of this effective photon-photon interaction

can be understood from the fact that in an isolated system
the radiation pressure force displaces the resonator equi-
librium by an amount proportional to the photon number nc
and thereby lowers the energy of this photon state by
n2c ��g. This is illustrated in more detail in Fig. 2 and

already explains the basic mechanism for photon blockade.
If the driving laser is on resonance with the j0ci ! j1ci
transition, i.e., � ¼ 0, the same j1ci ! j2ci transition is
detuned by 2�g and will be suppressed for �g > �.

However, this simple picture is based on the level structure
of the isolated OMS [16,17] only and ignores phonon
sideband transitions and other dynamical aspects of the
problem which will be addressed by the following more
rigorous analysis.
Excitation spectrum.—We first study the cavity excita-

tion spectrum Sð�0Þ :¼ limt!1hcyðtÞcðtÞi=n0, normalized
to the resonant photon number n0 ¼ E2=�2. The OMS is
initially prepared in the state �ð0Þ ¼ j0cih0cj � �th, where
�th is the thermal equilibrium state of the mechanical
modes. For a weak driving field, the dominant contribution
for Sð�0Þ arises from terms in the Heisenberg operator cðtÞ
which are linear in E. From the displaced oscillator repre-
sentation of Eq. (3), we obtain

_cðtÞ ¼ ði�� �ÞcðtÞ þ e�iPðtÞ½E � ffiffiffiffiffiffi
2�

p
finðtÞ� þOðE2Þ:

(5)

On the same level of accuracy the operator PðtÞ can be
approximated by the free evolution PðtÞ ¼ e�iHmtPeiHmt,
and after integrating Eq. (5) we find

Sð�0Þ ¼ �Re
Z 1

0
d�eði���Þ�e�F2ð�Þ þOðEÞ: (6)

FIG. 2 (color online). Level diagram of the isolated, single-
mode OMS where � ¼ g0=!m and �g ¼ g20=!m. For a photon

number state jnci, the radiation pressure displaces the resonator
equilibrium�nc � �. As a result, the energy of the photon states
is lowered by n2c ��g and leads to different resonance con-

ditions for the first and the second laser photons exciting the
cavity.
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FIG. 3 (color online). Cavity excitation spectrum Sð�0Þ for
different values of the coupling parameter � ¼ g0=!m and
(a) �=!m ¼ 4 and (b) �=!m ¼ 0:1. In (b) the ZPL indicates
the position of the phonon number conserving transition. In both
plots, T ¼ 0 and Q ¼ 150.
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Here e�F2ð�Þ ¼ heiPð�Þe�iPð0Þi is the equilibrium correlation
function of the displacement operator [24]. We define f2 �
f2ð!; �Þ ¼ 1� e�i!� and write F2ð�Þ as

Fkðf�igÞ ¼ 2

�

Z 1

0
d!

Jð!Þ
!2

f½Nð!Þ þ 1�fk þ Nð!Þf�kg;
(7)

where Nð!Þ ¼ 1=ðe@!=kBT � 1Þ is the equilibrium occupa-
tion number for a support temperature T and we have
introduced a general index k ¼ 2; 4; . . . to extend this result
to high-order correlation functions below.

Figure 3 shows Sð�0Þ for two different values of �=!m

and for Jð!Þ defined in Eq. (2). In the bad cavity limit � �
!m, we can approximate F2ð�Þ ’ i�g�þ �2=ð4T2

’Þ, and
we identify an optomechanical dephasing mechanism with

a time scale T�1
’ ¼ 2g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1=2

p
, where N :¼ Nð!mÞ.

This leads to a broadening of the spectrum and a gradual
change from a Lorentzian to a Gaussian line shape

Sð�0Þ 	
ffiffiffiffi
�

p
�T’e

��2
0T

2
’ for very large values of g0. A

completely different behavior is found in the sideband
resolved regime � 
 !m. Here we observe a redshift of
the zero phonon line (ZPL) towards �0 ¼ ��g and the

appearance of additional resonances at multiples of the
mechanical frequency !m. These peaks result from
phonon-assisted excitation processes.

For a more detailed discussion of Sð�0Þ, we now focus
on the limit Q � 1 of a weakly damped mechanical

mode. In this regime F2ð�Þ ¼ Fr
2ð�Þ þ iFi

2ð�Þ, where Fi
2 ’

�2 sinð!m�Þe�ð�=2Þ� and F2ð�Þ ’ ��þ �2ð2N þ 1Þ�
½1� cosð!m�Þe�ð�=2Þ��. Here � ¼ !m=Q is the mechani-
cal damping rate, and � is an additional decoherence rate
which arises from the low-frequency part of Jð!Þ. It van-
ishes for T ! 0 and is � ’ �2ð2N þ 1Þ� for temperatures
T � @!m=kB. The approximate analytic result for F2ð�Þ
allows us to expand the two-point correlation function in
Eq. (6) and evaluate the integral over � [25]. We obtain

Sð�0Þ ’ �
X1

n¼�1
An

�n

�2
n þ ð�0 þ�g � n!mÞ2

; (8)

where An ¼ e��2ð2Nþ1ÞIn½2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þp �½ðN þ 1Þ=N�n=2

and InðxÞ is the nth order modified Bessel function. This
result is familiar from the standard Huang-Rhys theory of
phonon-assisted excitation processes [25], and the posi-
tions and weights of the resonances can be understood
from different multiphonon sidebands of the j0ci ! j1ci
transition shown in Fig. 2. Apart from photon loss, the
resonances are broadened by the mechanical decoherence
rates where �n ’ �þ �þ jnj�=2 for N & 1 and �n ’
�þ 2� in the high-temperature limit. We emphasize that
both the appearance of phonon sidebands for � <!m as
well as the broadening of the cavity resonance in the
opposite regime � >!m are present even at T ¼ 0 where
they are pure quantum effects and provide a clear indica-
tion for single-photon strong coupling optomechanics.

Photon correlations.—For weak driving the excitation
spectrum is dominated by single-photon events and does
not contain information about photon-photon interactions.
To proceed we now concentrate on the normalized equal

time correlation function gð2Þð0Þ :¼ limt!1hcycycciðtÞ=
hcyci2ðtÞ, where in addition to Sð�0Þ we must evaluate

the two-photon correlation Gð2Þ :¼ limt!1hcy2ðtÞc2ðtÞi=
n20. Following the same arguments as above, we obtain

up to the lowest relevant order in E

_c 2ðtÞ ¼ 2ði�þ i�g � �Þc2ðtÞ þ Ee�iPðtÞcðtÞ þOðE3Þ;
(9)

where we have already omitted an irrelevant noise term
�finðtÞ. Together with Eq. (5) we finally obtain

Gð2Þ ¼ 2�3 Re
Z 1

0
d�1

Z 1

0
d�2

Z 1

0
d�3e

2ði�þi�p��Þ�1eð�i���Þ�2eði���Þ�3e�F4ð�1;�2;�3Þ;

(10)

where e�F4ðf�igÞ ¼ heiPð�1��2ÞeiPð�1Þe�iPð0Þe�iPð��3Þi is a
four-point correlation function of the mechanical displace-
ment operator. The function F4ðf�igÞ can be expressed in
terms of Eq. (7) by setting f4 � f4ð!; f�igÞ ¼ 2þ ei!�2 þ
e�i!�3 � ð1þ ei!�2Þe�i!�1ð1þ e�i!�3Þ.
Since a general discussion of Eq. (10) is quite involved,

we will from now on concentrate on the most relevant
regime where the mechanical decoherence rates � and �
can be neglected compared to �. However, we first point
out that in the bad cavity limit we can approximate
F4ðf�igÞ 	 i�pð4�1 � �2 þ �3Þ þ ð2�1 � �2 þ �3Þ2=ð4T2

’Þ.
Then, for �;�0 < T�1

’ we obtain gð2Þð0Þ 	 eð�0T’Þ2=
ð ffiffiffiffiffiffiffi

4�
p

�T’Þ> 1, and we conclude that even for strong

coupling g0 the photon statistics of an OMS in the bad
cavity limit remains classical.
Let us now consider the limit Q ! 1 where F4ðf�igÞ ’

�2f4ð!m; f�igÞ, and, as above, we use a series expansion of
the correlation function in Eq. (10) to evaluate the integrals
over the �i. We obtain

Gð2Þ ¼ Re
X
n;m;p

Bn;m;p

½�þ ið�� n!mÞ�½�� ið��m!mÞ�

� 2�3

½2�� ið2�þ 2�g � p!mÞ� ; (11)

where the coefficients Bn;m;p � Bn;m;pð�Þ follow from

e��2f4ð!m;f�igÞ ¼ X
n;m;p

Bn;m;pe
i!mð�2n��3m��1pÞ: (12)

For T ¼ 0 explicit expressions are given by Bn;m;p ¼
e�2�2ð�2ÞpWn;pð�ÞWm;pð�Þ=n!m!p!, where Wn;pð�Þ ¼
ð�1ÞnU½�n; 1� nþ p;�2� and U½a; b; x� is a confluent
hypergeometric function.
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Discussion.—In Fig. 4(a), we use Eqs. (8) and (11) to

evaluate gð2Þð0Þ and plot the result as a function of �0 and
for � 
 !m. We observe a sequence of bunching and
antibunching resonances which can be qualitatively under-
stood from the level diagram shown in Fig. 2, where
depending on �0 either the one- or the two-photon tran-
sition becomes resonant with different phonon sidebands.
For a better understanding of this process we now consider
the regime �< 1 and assume that the laser is tuned close
to the ZPL of the one-photon transition, i.e., � ¼ �0 þ
�g 
 !m. Then, still assuming � <!m, the dominant

contributions to the sum in Eq. (11) arise from the terms
n ¼ m ¼ 0 and p ¼ 0; 1, and combined with the n ¼ 0
terms in Eq. (8) we obtain

gð2Þð0Þ ’
�

C0ð�2 þ�2Þ
�2 þ ð�þ�gÞ2

þ �2C1ð�2 þ �2Þ
�2 þ ð�þ �g �!m=2Þ2

�
:

(13)

Here C0 ¼ B0;0;0=A
2
0 and C1 ¼ B0;0;1=ð�2A2

0Þ and for zero

temperature C0 ¼ C1 ¼ 1. Figure 4(a) shows that Eq. (13)
provides indeed an excellent approximation of the first
antibunching tip around �0 ’ ��g and allows us to

make the following analytic predictions. First, for � > g0
the minimum for gð2Þð0Þ occurs at � 	 � and scales as

minfgð2Þð0Þg 	 1� g20=ð!m�Þ. Therefore, as expected, no
significant antibunching effects appear unless the strong
coupling condition g0 > � is achieved. In this regime the

minimum of gð2Þð0Þ occurs at � ¼ 0 and

minfgð2Þð0Þg ’ �2

!2
m

�
1

�4
þ 4�2

ð�=!mÞ2 þ ð1� 2�2Þ2
�
: (14)

This result demonstrates that OMS can indeed exhibit a
strong photon blockade effect where for � 
 1 the

suppression of two-photon events scales with the parame-
ter �2!2

m=g
4
0. However, rather than improving monotoni-

cally with increasing coupling strength, the blockade

reaches a minimum at � ’ 0:5 with a value gð2Þð0Þ 	
20ð�=!mÞ2. This minimum is a consequence of the
j1ci ! j2ci transition getting into resonance with the first

phonon sideband, which occurs for � ¼ 1=
ffiffiffi
2

p
. Therefore,

the fidelity of the photon blockade effect is ultimately
limited by the sideband parameter �=!m, and the effect
vanishes as this parameter approaches 1.
Finally, we use Eqs. (8) and (11) to evaluate the mini-

mum of gð2Þð0Þ for a large range of parameters g0 and �
numerically. The results are plotted in Fig. 4(b) and show a
clear boundary at � ’ !m which—quite independently of
the value of g0—separates the (‘‘classical’’) regime

gð2Þð0Þ � 1 from the regime of pure quantum correlations.
We also see that in the sideband resolved regime � <!m

the photon blockade exhibits a repetitive pattern and for
g0 >!m=2 no significant further improvement is
achieved. These results show that the approximate result
(13) already captures the essence of the two-photon block-
ade effect in OMS.
In summary we have identified the mechanism for strong

photon-photon interactions in OMS and studied the depen-
dence of the two-photon blockade effect on the relevant
parameters g0, �, and !m. Our results provide a guideline
for future experiments and a first detailed theoretical de-
scription of the two-photon physics, which is relevant for
applications of OMS in the context of quantum information
processing or quantum simulation.
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Note added.—After submission of this manuscript, a

related work by Nunnenkamp et al. appeared [26].
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