Nonzero θ_{13} for Neutrino Mixing in the Context of A_4 Symmetry

Ernest Ma and Daniel Wegman

Department of Physics and Astronomy, University of California, Riverside, California 92521, USA (Received 21 June 2011; published 5 August 2011)

In the original 2004 paper which first derived tribimaximal mixing in the context of A_4 , i.e., the non-Abelian finite symmetry group of the tetrahedron, as its simplest application, it was also pointed out how $\theta_{13} \neq 0$ may be accommodated. On the strength of the new T2K result that $0.03(0.04) \leq \sin^2 2\theta_{13} \leq$ 0.28(0.34) for $\delta_{CP} = 0$ and normal (inverted) neutrino mass hierarchy, we perform a more detailed analysis of how this original idea may be realized in the context of $A₄$.

DOI: [10.1103/PhysRevLett.107.061803](http://dx.doi.org/10.1103/PhysRevLett.107.061803) PACS numbers: 14.60.Pq, 11.30.Hv

Neutrino oscillations require nonzero neutrino masses as well as nonzero neutrino mixing angles. The current combined world data imply [\[1\]](#page-2-0)

$$
7.05 \times 10^{-5} \text{ eV}^2 \le \Delta m_{21}^2 \le 8.34 \times 10^{-5} \text{ eV}^2, \qquad (1)
$$

$$
2.07 \times 10^{-3} \text{ eV}^2 \le \Delta m_{32}^2 \le 2.75 \times 10^{-3} \text{ eV}^2, \quad (2)
$$

 $0.36 \le \sin^2 \theta_{23} \le 0.67$, $0.25 \le \sin^2 \theta_{12} \le 0.37$, (3)

$$
\sin^2 \theta_{13} \le 0.035(90\% \text{C.L.}). \tag{4}
$$

However, the T2K Collaboration recently announced that a new measurement [[2\]](#page-2-1) has yielded a nonzero θ_{13} at 90% confidence level, i.e.,

$$
0.03(0.04) \le \sin^2 2\theta_{13} \le 0.28(0.34) \tag{5}
$$

for $\delta_{CP} = 0$ and normal (inverted) neutrino mass hierarchy.

For several years now, the mixing matrix $U_{1\nu}$ linking the charged leptons (e, μ, τ) to the neutrino mass eigenstates (ν_1, ν_2, ν_3) has often been assumed to be of tribimaximal form [[3](#page-2-2)], i.e.,

$$
U_{\rm TB} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix},
$$
 (6)

which predicts $\theta_{13} = 0$. This is particularly appealing because it was derived in 2004 [[4](#page-2-3)] from the simple application of the symmetry group A_4 , first used for understanding maximal $\nu_{\mu} - \nu_{\tau}$ mixing in 2001 [[5\]](#page-2-4). However, even in that original 2004 paper [\[4\]](#page-2-3), the possibility of $\theta_{13} \neq 0$ was already anticipated. Although the new T2K result [\[2\]](#page-2-1) is only 2.5σ away from zero, it is the most solid experimental indication to date of this possibility. Here we offer a more detailed analysis of how $\theta_{13} \neq 0$ may be realized in the context of A_4 .

As is well known, A_4 is the group of the even permutation of 4 objects. It is also the symmetry of the perfect three-dimensional tetrahedron [[6\]](#page-2-5). It has 12 elements and

4 irreducible representations: $1, 1', 1'', 3$, with the multiplication rule

$$
\underline{3} \times \underline{3} = \underline{1} + \underline{1}' + \underline{1}'' + \underline{3} + \underline{3}.
$$
 (7)

The first step in understanding neutrino mixing is to show that A_4 allows the charged-lepton mass matrix to be diagonalized by the Cabibbo-Wolfenstein matrix [\[7](#page-2-6)[,8](#page-2-7)]

$$
U_{\rm CW} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}, \tag{8}
$$

where $\omega = e^{2\pi i/3} = -1/2 + i\sqrt{3}/2$, with three independent eigenvalues, i.e., m_e , m_μ , m_τ . This has been achieved in two ways. One is the original proposal of 2001 [[5\]](#page-2-4). The other was discovered later in 2006 [[9](#page-2-8)]. In the former, the lepton assignments are $L_i = (v_i, l_i) \sim \frac{3}{2}$, $l_1^c \sim \frac{1}{2}$, $l_2^c \sim \frac{1}{2}$, $l_3^c \sim \underline{1}''$, with 3 Higgs doublets $\Phi_i = (\phi_i^0, \phi_i^+) \sim \underline{3}$. In the latter, they are $L_i = (v_i, l_i) \sim \frac{3}{2}$, $l_i^c \sim \frac{3}{2}$, with 4 Higgs doublets $\Phi_i = (\phi_i^0, \phi_i^-) \sim \underline{3}, \Phi_0 \sim \underline{1}$. Assuming $v_1 = v_2 = v_3$ for the vacuum expectation values of Φ_i , which correspond to a Z_3 residual symmetry (lepton triality) [\[10–](#page-2-9)[13\]](#page-2-10), the seemingly impossible result of a diagonal charged-lepton matrix is always obtained from U_{CW} of Eq. ([8\)](#page-0-0), independent of the values of m_e , m_μ , m_τ . This is a highly nontrivial result, which motivates how the otherwise arbitrary 3×3 neutrino mass should be organized. It argues strongly for an underlying non-Abelian symmetry with a threedimensional irreducible representation, the smallest of which is A_4 .

We now consider the neutrino mass matrix in the original A_4 basis. Let there be 6 heavy Higgs triplets [\[14\]](#page-2-11):

$$
\xi_1 \sim \underline{1}, \qquad \xi_2 \sim \underline{1}', \qquad \xi_3 \sim \underline{1}'',
$$

\n $\xi_i \sim \underline{3}(i = 4, 5, 6),$ (9)

where $\xi_i = (\xi_i^{++}, \xi_i^{+}, \xi_i^{0})$. Then,

FIG. 1 (color online). Physical neutrino masses $|m'_{1,2,3}|$ and the effective m_{ee} for neutrinoless double beta decay of this model in the range $0.03 \le \sin^2 2\theta_{13} \le 0.135$ for $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{12} = 0.84$.

$$
\mathcal{M}_{\nu} = \begin{pmatrix} a+b+c & f & e \\ f & a+\omega b+\omega^2 c & d \\ e & d & a+\omega^2 b+\omega c \end{pmatrix},
$$
\n(10)

where a comes from $\langle \xi_1^0 \rangle$, b from $\langle \xi_2^0 \rangle$, c from $\langle \xi_3^0 \rangle$, d from $\langle \xi_4^0 \rangle$, e from $\langle \xi_5^0 \rangle$, f from $\langle \xi_6^0 \rangle$. As it stands, there is of course no prediction at all. For a pattern to emerge, the way A_4 breaks into its subgroups must be considered. For $b = c$ and $e = f = 0$, which breaks A_4 to Z_2 , the neutrino mass matrix, written in the basis where the charged-lepton mass matrix is diagonal, is given by

$$
\mathcal{M}_{\nu}^{(e,\mu,\tau)} = U_{\text{CW}}^{\dagger} \mathcal{M}_{\nu} U_{\text{CW}}^*
$$
\n
$$
= \begin{pmatrix} a + (2d/3) & b - (d/3) & b - (d/3) \\ b - (d/3) & b + (2d/3) & a - (d/3) \\ b - (d/3) & a - (d/3) & b + (2d/3) \end{pmatrix},
$$
\n(11)

which is indeed diagonalized by U_{TB} of Eq. ([6](#page-0-1)), with eigenvalues $m_1 = a - b + d$, $m_2 = a + 2b$, and $m_3 = a$ $-a + b + d$. It has been shown [[15](#page-2-12)] how this pattern is obtained from A_4 alone with the help of lepton number.

Deviations from tribimaximal mixing may be obtained for $b \neq c$. This will allow ν_1 to mix with ν_3 and θ_{13} becomes nonzero. However, this same mixing will move θ_{12} to a larger value [\[4](#page-2-3)] so that tan² θ_{12} > 0.5 which is not favored by current data. To allow $\tan^2\theta_{12} < 0.5$, it was proposed [\[4\]](#page-2-3) that $e = -f \neq 0$ in Eq. ([10](#page-1-0)). This is maintained by an assumed residual symmetry of the $\xi \Phi \Phi$ soft terms of the Higgs potential under which $\xi_5 \leftrightarrow -\xi_6$ and $\Phi_2 \leftrightarrow \Phi_3$. As a result, the neutrino mass matrix under U_{TB} is no longer diagonal, but is given by [\[4\]](#page-2-3)

FIG. 2 (color online). Physical neutrino masses $|m'_{1,2,3}|$ and the effective m_{ee} for neutrinoless double beta decay of this model in the range $0.03 \le \sin^2 2\theta_{13} \le 0.135$ for $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{12} = 0.87$.

$$
\mathcal{M}_{\nu}^{(1,2,3)} = \begin{pmatrix} m_1 & 0 & m_4 \\ 0 & m_2 & m_5 \\ m_4 & m_5 & m_3 \end{pmatrix},
$$
 (12)

where $m_1 = a - (b + c)/2 + d$, $m_2 = a + b + c$, $m_3 = -a + (b + c)/2 + d$, $m_4 = \sqrt{3}/2(c - b)$ and $m_5 =$ $-i\sqrt{2}e$. If $m_4 = 0$, then ν_2 mixes with ν_3 and it can be shown that the allowed range of θ_{23} from Eq. [\(3](#page-0-2)) implies $\sin^2 2\theta_{13} \leq 0.04$ which lies on the outer edge of the allowed region of Eq. [\(5](#page-0-3)). In the following, we consider both m_4 and m_5 to be nonzero and study various numerical solutions to the T2K data.

The atmospheric neutrino mixing is assumed to be maximal, i.e., $\sin^2 2\theta_{23} = 1$, which is also the assumption of T2K in obtaining their new result. The solar neutrino mixing is taken to be $\sin^2 2\theta_{12} = 0.87 \pm 0.3$ [\[1](#page-2-0)]. We also use $\Delta m_{32}^2 = 2.40 \times 10^{-3} \text{ eV}^2$ which is the value used

FIG. 3 (color online). Physical neutrino masses $|m'_{1,2,3}|$ and the effective m_{ee} for neutrinoless double beta decay of this model in the range $0.03 \le \sin^2 2\theta_{13} \le 0.135$ for $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{12} = 0.90$.

FIG. 4 (color online). The A_4 parameters $m_{1,2,3,4,5}$ of this model in the range $0.03 \le \sin^2 2\theta_{13} \le 0.135$ for $\sin^2 2\theta_{23} = 1$ and $\sin^2 2\theta_{12} = 0.87$.

by T2K, and $\Delta m_{21}^2 = 7.65 \times 10^{-5} \text{ eV}^2$. For the central value of $\theta_{12} = 34.43^{\circ}$, we have $\tan^2 \theta_{12} = 0.47$ which is rather close to the tribimaximal prediction of 0.5. Using this and assuming the central value of $sin\theta_{13} = 0.168$ $(\sin^2 2\theta_{13} = 0.11)$, the zero entry of the neutrino mass matrix of Eq. ([12](#page-1-1)) implies the condition

$$
0.007655m'_1 - 0.020990m'_2 + 0.013342m'_3 = 0, \quad (13)
$$

where $m'_{1,2,3}$ are the mass eigenvalues of Eq. [\(12\)](#page-1-1). Hence they are related to the measured Δm_{32}^2 and Δm_{21}^2 by

$$
m_2' = \pm \sqrt{m_1'^2 + \Delta m_{21}^2},\tag{14}
$$

$$
m_3' = \pm \sqrt{m_1'^2 + \Delta m_{21}^2/2 \pm \Delta m_{32}^2}.
$$
 (15)

There is only one solution to Eq. [\(13\)](#page-2-13), i.e.

$$
m'_1 = 0.0246 \text{ eV}, \qquad m'_2 = -0.0261 \text{ eV},
$$

$$
m'_3 = -0.0552 \text{ eV}, \qquad (16)
$$

which exhibits normal mass hierarchy. From this solution, we then obtain $m_{1,2,3,4,5}$ and the original A_4 parameters a, b, c, d, e. The ν_e mass observed in nuclear beta decay is given by $\sum_{i} |U_{ei}|^2 |m'_i| = 0.026 \text{ eV}$. The effective mass m_{ee} for neutrinoless double beta decay is

$$
m_{ee} = |a + (2/3)d| = |(2/3)m_1 + (1/3)m_2|.
$$
 (17)

We plot in Figs. [1](#page-1-2)[–3](#page-1-3) the solutions for $|m'_{1,2,3}|$ and m_{ee} as a function of $\sin^2 2\theta_{13}$ in the range 0.03 to 0.135 [corresponding to the upper bound given in Eq. [\(4\)](#page-0-4)] for $\sin^2 \theta_{23} = 1$ and the values $\sin^2 2\theta_{12} = 0.84$, 0.87, 0.90. Thus m_{ee} is predicted to be at most 0.04 eV. As for the ν_e mass in nuclear beta decay, it can be read off as approximately given by $(2|m_1'| + |m_2'|)/3$. We also plot in Fig. [4](#page-2-14) the values of $m_{1,2,3,4,5}$ for $\sin^2 2\theta_{12} = 0.87$. This shows that m_4 and m_5 , i.e., the parameters of A_4 which deviate from tribimaximal mixing, are indeed small. In terms of A_4 symmetry, the following breaking patterns are in effect: in the charged-lepton sector, A_4 breaks to Z_3 (which may be verified experimentally from Higgsboson decay $[13]$; in the neutrino sector, A_4 breaks first to Z_2 (the tribimaximal limit), and then Z_2 is also broken with the pattern $b \neq c$ and $f = -e$, which may be maintained by a suitably chosen set of soft terms.

In conclusion, on the strength of the recent observation [\[2\]](#page-2-1) of a nonzero θ_{13} for neutrino mixing, the original A_4 proposal of 2004 [\[4\]](#page-2-3) is updated. We find that solutions are indeed possible with the most recent data but only in a normal hierarchy of neutrino masses, i.e. $|m'_1| < |m'_2|$ $|m_3'|$. We confirm that the parameters of A_4 which deviate from tribimaximal mixing, i.e. m_4 and m_5 , are indeed small. We also make predictions on the effective m_{ee} in neutrinoless double beta decay.

This work is supported in part by the U.S. Department of Energy under Grant No. DE-FG03-94ER40837.

- [1] K. Nakamura et al. (Particle Data Group), [J. Phys. G](http://dx.doi.org/10.1088/0954-3899/37/7A/075021) 37, [075021 \(2010\).](http://dx.doi.org/10.1088/0954-3899/37/7A/075021)
- [2] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011).
- [3] P. F. Harrison, D. H. Perkins, and W. G. Scott, [Phys. Lett.](http://dx.doi.org/10.1016/S0370-2693(02)01336-9) ^B 530[, 167 \(2002\)](http://dx.doi.org/10.1016/S0370-2693(02)01336-9).
- [4] E. Ma, Phys. Rev. D **70**[, 031901 \(2004\)](http://dx.doi.org/10.1103/PhysRevD.70.031901).
- [5] E. Ma and G. Rajasekaran, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.64.113012) 64, 113012 [\(2001\)](http://dx.doi.org/10.1103/PhysRevD.64.113012).
- [6] E. Ma, [Mod. Phys. Lett. A](http://dx.doi.org/10.1142/S0217732302006412) 17, 289 (2002).
- [7] N. Cabibbo, [Phys. Lett. B](http://dx.doi.org/10.1016/0370-2693(78)90132-6) 72, 333 (1978).
- [8] L. Wolfenstein, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.18.958) 18, 958 (1978).
[9] E. Ma, Mod. Phys. Lett. A 21, 2931 (2006).
- E. Ma, [Mod. Phys. Lett. A](http://dx.doi.org/10.1142/S0217732306022262) 21, 2931 (2006).
- [10] E. Ma, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2008.12.038) **671**, 366 (2009).
- [11] E. Ma, Phys. Rev. D **82**[, 037301 \(2010\)](http://dx.doi.org/10.1103/PhysRevD.82.037301).
- [12] Q.-H. Cao, S. Khalil, E. Ma, and H. Okada, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.106.131801) Lett. **106**[, 131801 \(2011\).](http://dx.doi.org/10.1103/PhysRevLett.106.131801)
- [13] Q.-H. Cao, A. Damanik, E. Ma, and D. Wegman, [Phys.](http://dx.doi.org/10.1103/PhysRevD.83.093012) Rev. D 83[, 093012 \(2011\)](http://dx.doi.org/10.1103/PhysRevD.83.093012).
- [14] E. Ma and U. Sarkar, *[Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.80.5716)* **80**, 5716 (1998).
- [15] E. Ma, [Mod. Phys. Lett. A](http://dx.doi.org/10.1142/S021773231003361X) 25, 2215 (2010).