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We consider two SUSY-breaking hidden sectors which decouple when their respective couplings to the

visible particles are switched off. In such a scenario one expects to find two light fermions: the Goldstino

and the pseudo-Goldstino. While the former remains massless in the rigid limit, the latter becomes

massive due to radiative effects which we analyze from several different points of view. This analysis is

greatly facilitated by a version of the Goldberger-Treiman relation, which allows us to write a universal

nonperturbative formula for the mass. We carry out the analysis in detail in the context of gauge

mediation, where we find that the pseudo-Goldstino mass is at least around the GeV scale and can be

easily at the electroweak range, even in low scale models. This leads to interesting and unconventional

possibilities in collider physics and it also has potential applications in cosmology.
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Introduction and summary.—In this Letter we consider
models with multiple supersymmetry-breaking sectors. We
assume these SUSY-breaking sectors communicate only
through their respective couplings to the supersymmetric
standard model (SSM). In other words, the SUSY-breaking
sectors decouple when their respective couplings to the
SSM are set to zero. Such models could naturally appear
in string theory, where there may be several independent
sources of supersymmetry breaking. They may also arise
naturally in the study of quiver gauge theories. Our main
objective is to study the various field-theoretic effects that
are relevant in such a setup.

One may wonder whether having such SUSY-breaking
sectors which interact only indirectly through the SSM is
natural. Indeed, in field theory this can be perfectly natural
since renormalizable contact terms may be forbidden by
gauge invariance or global symmetries.

At zeroth order in the interactions with the SSM, there
are obviously many massless Goldstino particles. Turning
on the small couplings to the SSM, one linear combination,
the true Goldstino, remains massless, while the other linear
combinations get masses from tree-level and radiative

effects. Denoting f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfAÞ2 þ ðfBÞ2p
, then the physical

Goldstino and pseudo-Goldstino are given by

fG ¼ fAGA þ fBGB; fG0 ¼ �fBGA þ fAGB: (1)

First, consider the problem from the point of view of the
universal chiral Lagrangian for spontaneously broken su-
persymmetry. We assume two hidden sectors, represented

by the Goldstino superfields XA and XB, contribute in some
way to the soft gaugino mass

L ¼ m�

2

Z
d2�

�
�A

fA
XA þ �B

fB
XB

�
W2

�: (2)

Note that �A þ �B ¼ 1 by definition of m�. The chiral
Lagrangian approach shows that the contribution from
deep low momenta is quadratically sensitive to the cutoff
�UV of the chiral Lagrangian

mG0 � 1

16�2

m3
gaugino

f2
�2

UV: (3)

Hence, the contribution is not dominated by parametrically
small momenta and one has to invoke the detailed micro-
scopic physics to determine the mass. One can nevertheless
show that (3) dominates over tree-level contributions that
arise due to electroweak symmetry breaking.
As an example of a microscopically well-defined setup

we will analyze in detail two hidden sectors which only
communicate with the SSM via gauge interactions. In this
case we will find that if the two sectors have a common
messenger scale and comparable SUSY-breaking scales,
one can roughly estimate the mass of the pseudo-Goldstino
mG0 as �1 GeV. On the other hand, we may consider, for
instance, different SUSY-breaking scales for the two sec-
tors; then mG0 can be easily as high as �100 GeV.
It follows that our field theory effects surely dominate

over gravity as long as m3=2 � F=MPL is smaller than a

GeVor so. This means
ffiffiffi
f

p � 109, which covers in entirety
the parameter space of models based on gauge mediation
and variations thereof. On the other hand, since the

PRL 107, 061601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

5 AUGUST 2011

0031-9007=11=107(6)=061601(4) 061601-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.061601


field-theoretic effects can be easily as large as 100 GeV, it
may be important to take them into account even in the
regime of gravity mediation.

Having such heavy Goldstino-like particles in control-
lable low scale models potentially leads to unconventional
signatures in collider physics and cosmology. Decays of
SSM particles sometimes proceed predominantly into the
pseudo-Goldstino and may or may not be accompanied by
displaced vertices. In addition, the pseudo-Goldstino has
three-body decays with observationally interesting time
scales.

A recent inspiring paper [1] (see also the earlier work
[2]) considers situations where the gravitational effects are
significant. Consistency of supergravity Lagrangians de-
mands the existence of universal nonrenormalizable con-
tact terms mixing the various sectors. Assuming that this is
the only source for mixing between the sectors, the authors
of [1] computed the supergravity contribution to the mass
of the pseudo-Goldstino. They found that the induced mass
is 2m3=2. Possible corrections to this result have been

studied in [3] and various interesting applications of this
scenario are discussed in [4–6]. In this Letter we consider
theories in the rigid limit, where these supergravity correc-
tions are negligible.

Hidden sectors communicating with the SSM by gauge
interactions.—The setup we opt to focus on is depicted in
Fig. 1. We consider two SUSY-breaking theories, labeled A
and B, which communicate with the SSM via gauge inter-
actions. More precisely, when the SSM gauge couplings
are set to zero, the sectors A, B decouple from each other.
These decoupled theories have some global symmetry
groups in which the SSM gauge group can be embedded
and weakly gauged.

In essence, this is the setup of general gauge mediation
[7], only that the hidden sector is assumed to consist of two
decoupled field theories. When the gauge couplings are
turned on, the two sectors can communicate by exchanging
SSM fields. Obviously, at the zeroth order in the gauge
couplings, there are two exactly massless Goldstino fermi-
ons. Our goal is to find the leading nonzero contribution in
an expansion in the gauge couplings.

The mass matrix for the Goldstino system, defined by
� 1

2G
iMijG

j with a symmetric matrix M, is constrained

to have one zero eigenvector corresponding to the true
Goldstino (1). Therefore, the matrix has to be of the form

M ¼ � fB

fA
MAB MAB

MAB � fA

fB
MAB

0
@

1
A: (4)

Once we have calculated MAB, the mass of the pseudo-
Goldstino is determined via

mG0 ¼
�
fB

fA
þ fA

fB

�
MAB: (5)

Our goal is therefore to compute the first nontrivial
contribution to MAB in an expansion in the gauge cou-
plings. The processes contributing to MAB consist of GA

transforming into GB via some intermediate hidden sector
and SSM fields.
It turns out that we must consider processes of order g4.

These allow for two intermediate SSM fields and are thus
messenger parity invariant. The intermediate fields must be
a gaugino and a gauge field or alternatively a gaugino and a
D auxiliary field. This is summarized in Fig. 2.
In the absence of any particular detailed knowledge of

the hidden sector we must account for the blobs formally.
On the other hand, if the theory is specified and it is weakly
coupled, the blobs can be computed in perturbation theory.
For instance, in minimal gauge mediation the blobs are, to
leading order, triangles with virtual messenger fields.
Therefore, the pseudo-Goldstino obtains a mass due to
three-loop corrections.
In the processes of Fig. 2 the external Goldstinos are

at zero momentum. One can interpret the blobs as three-
point functions of the supercurrent and two insertions
of operators of the linear current multiplet. In other words,
the pertinent correlation functions are of the form
hS��ðxÞj�ðyÞ �j _�ðzÞi, hS��ðxÞJðyÞ �j _�ðzÞi, hS��ðxÞj�ðyÞj�ðzÞi,
hS��ðxÞJðyÞj�ðzÞi. For our purposes we need the external

state to be a zero-momentum Goldstino; hence, the corre-
lation functions above should be studied only in the limit of
large x (much larger than any other scale in the problem).
In this large x limit the three-point functions above

simplify dramatically. The reason is that at very low en-
ergies the supercurrent flows to the Goldstino particle
SA;B�� � fA;B��� _�

�GA;B _� and therefore the large x limit cor-

responds to inserting a zero-momentum Goldstino in the
correlation function. This is the same as acting with the
supercharge on the vacuum and thus these three-point
functions are related to two-point functions of the form
h½ �Q _	; j�ðyÞ �j _�ðzÞ�i, h½ �Q _	; JðyÞ �j _�ðzÞ�i, h½ �Q _	; j�ðyÞj�ðzÞ�i,
h½ �Q _	; JðyÞj�ðzÞ�i. These two-point functions, in turn,

appear in the calculations of soft masses in gauge media-
tion. We adopt notation similar to that in general gauge
mediation [7]:

A BSSM

FIG. 1. Two SUSY-breaking theories communicating with the
SSM via gauge interactions.

+
GA(p=0) GB(p=0) GA(p=0) GB(p=0)

FIG. 2. At order g4 the sectors A and B can communicate via
two intermediate SSM fields. We must also add the diagrams
with the gauginos flowing in the opposite direction.
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hJA;BðpÞJð�pÞA;Bi ¼ CA;B
0 ðp2Þ;

hjA;B� ðpÞ �jA;B_� ð�pÞi ¼ ���
� _�p�C

A;B
1=2ðp2Þ;

hjA;B� ðpÞjA;B� ð�pÞi ¼ �ðp2
�� � p�p�ÞCA;B
1 ðp2Þ;

hjA;B� ðpÞjA;B� ð�pÞi ¼ ���B
A;B
1=2ðp2Þ:

(6)

The discussion above shows that the leading order con-
tribution to the pseudo-Goldstino mass should be captured
by the functions in (6). A quick way to derive the precise
relations between these two-point functions and three-
point functions is to start by recalling the effective qua-
dratic action for the vector multiplet:

1

g2
Leff ¼ 1

2
CA
0D

2 � iCA
1=2��

�@� ��� 1

4
CA
1F��F

��

� 1

2
ðBA

1=2��þ c:c:Þ þ A $ B: (7)

This breaks supersymmetry if B1=2 � 0 and if the C’s are
not all equal. However, it can be supersymmetrized by
adding terms linear in the Goldstino as follows:

1

g2
Lone G

eff ¼ 1ffiffiffi
2

p
fA

ðCA
0 � CA

1=2ÞGA��@� ��D

þ iffiffiffi
2

p
fA

ðCA
1 � CA

1=2ÞGA��@� ��F��

þ iBA
1=2ffiffiffi
2

p
fA

�
GA�D� i

2
��� ���GAF��

�

þ A $ B: (8)

To make the theory fully supersymmetric, in addition to (8)
, we need to add terms bilinear in the Goldstinos, and terms
with derivatives acting on the Goldstinos. In order to
compute MAB, (8) suffices. The procedure we have in-
voked here is a supersymmetric reincarnation of the
Goldberger-Treiman relation.

From here to derive the mass of the pseudo-Goldstino
we only need to carry out the contractions using the
vertices in (8). After the dust settles, we find that the
leading order contribution to the mass of the pseudo-
Goldstino is

mG0 ¼ g4

2

�
1

ðfAÞ2 þ
1

ðfBÞ2
�Z d4p

ð2�Þ4 B
A
1=2ðCB

0 � 4CB
1=2

þ 3CB
1 Þ þ A $ B: (9)

Note that the combination of the C functions in the inte-
grand is precisely the one appearing in the formula for the
soft scalar mass in gauge mediation. The discussion in [8]
shows that C0 � 4C1=2 þ 3C1 behaves at most like 1=p4 at

large momentum and it is also possible to prove that B1=2

scales at most like 1=p at large momentum. Consequently,
the integral is UV convergent.

The computation above has been greatly simplified
by the structure of the matrix (4), which allowed us to

compute mG0 only in terms of MAB. As a consistency
check, we can also compute the diagonal elements of the
mass matrix MAA and MBB. In order to do this one must
take into account also the corrections to (8) quadratic in
each of the Goldstinos.
We can now estimate (9) crudely. Assume both hidden

sectors have some typical supersymmetric scaleM and the
SUSY-breaking scales are fA, fB. To leading order in the
SUSY-breaking scales we would get

mG0 � g4

ð16�2Þ3
�
fA

fB
þ fB

fA

��
fA

M
þ fB

M

�
: (10)

If the two SUSY-breaking scales are comparable this leads
to the estimate

mG0 � g4

ð16�2Þ3
f

M
� g2

ð16�2Þ2 msoft � 1 GeV: (11)

We have included a factor ofOð10Þ due to the sum over the
gauge sector of the SSM.
However, we can also entertain other possibilities. For

instance, consider a situation where the fundamental super-
symmetric scales in the two sectors are comparable but the
SUSY-breaking scales are different. To be concrete we
assume that fA � fB (the soft parameters thus mostly
originate in sector A). In this case, the formula (10) predicts
an enhancement of mG0 by fA=fB. This ratio, however,
cannot be arbitrarily large because at some point the back-
reaction of the SSM on the hidden sector B becomes too
large and our formalism breaks down. By computing the
sGoldstino vacuum expectation value in sector B, we can
estimate that the backreaction is surely tame for fA=fB �
103. (For this estimate we have assumed the mass of the
sGoldstino is around fA;B=M.) Thus, we can easily imagine
the pseudo-Goldstino picking a mass at the electroweak
range. Note that such a (perhaps surprisingly) large mass
for the pseudo-Goldstino is achieved effortlessly and ubiq-
uitously in low scale models, where corrections from su-
pergravity are completely negligible.
One can also evaluate (9) explicitly in a variety of simple

realizations of gauge mediation, for instance, if the two
hidden sectors are copies of minimal gauge mediation.
Phenomenology of Goldstinos.—In the scenario pre-

sented in this note, the pseudo-Goldstino is generically
the next-to-lightest supersymmetric particle, with the light-
est supersymmetric particle being of course the very light
gravitino. The pseudo-Goldstino is not stable and its decay
can be analyzed via the chiral Lagrangian. For instance, the
terms responsible for the gaugino mass (2) give rise to
vertices of the form �G�� ����F

�� which induce three-

body decays of the pseudo-Goldstino into two photons and
the true Goldstino. There are also some very important
vertices with two Goldstinos. In fact, the naive estimate
based on dimensional analysis fails due to an exact can-
cellation between the different vertices. An analogous
story takes place in the couplings to the SM fermions.
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One is left with the following estimate of the decay
width into two standard model fermions and the true
Goldstino [5]:

�G0!Gf �f �
m9

G0

105f4eff

�ðmA
~f
Þ2 tan�� ðmB

~f
Þ2 cot�

m2
~f

�
2
: (12)

We denote tan� ¼ fB=fA and ðmA;B
~f

Þ2 are the contributions
to the mass of the slepton from the two hidden sectors, such
that ðmA

~f
Þ2 þ ðmB

~f
Þ2 ¼ m2

~f
. There is a similar width to

decay into two photons and the true Goldstino.
Consider theories with two general SUSY-breaking

scales fA � fB. Assuming again, for simplicity, that the
messenger scales in the two sectors are comparable and

taking mA;B
~f

/ fA;B=M, we find

�� 1021 sec

�
feff

1010 GeV2

�
4
�
fB

fA

�
7
: (13)

To derive the estimate above we have taken the mass of the
pseudo-Goldstino to be mG0 � fA=fB GeV. This gives
rise to many different possibilities. For instance, when
the pseudo-Goldstino is around the weak or TeV scale
(i.e., fA=fB � 102�3), models of low scale mediationffiffiffi
f

p � 104�5 GeV give a lifetime of the order of a few
seconds. Still keeping the pseudo-Goldstino at the weak-
TeV scale, we can also choose

ffiffiffiffiffiffiffiffi
feff

p � 108 GeV which
leads to lifetimes of the order of 1023–24 secs. Both of these
time scales have potentially interesting observable conse-
quences [9]. One can of course imagine many other sce-
narios stemming from (13), including scenarios with
lighter pseudo-Goldstino.

One can also easily imagine many unconventional col-
lider manifestations of the setup here. One obvious con-
sequence of having two different hidden sectors is that the
relation between the decay time of the lightest observable-
sector supersymmetric particle (LOSP) and the scale of
SUSY-breaking is no longer universally determined. This
can have several different consequences.

For instance, consider two hidden sectors with compa-
rable messenger scales but with a possible hierarchy in the
SUSY-breaking scales. From the couplings (2) we see that
the gaugino is equally likely to decay to either of the
Goldstinos (since the dependence on f cancels and only
the supersymmetric scale remains). Therefore, if the
LOSP is bino- or winolike, and it is heavier than the
pseudo-Goldstino, many of the processes of the SSM will
terminate in a heavy, long-lived, pseudo-Goldstino (the

decay can be prompt or there can be displaced vertices).
This also comes accompanied by an isolated photon from
the last step of the decay. Having such an invisible heavy
particle as missing energy is clearly different from con-
ventional scenarios of gauge mediation where the missing
energy is carried away by practically massless objects. It is
also distinguishable from gravity mediation, where the
LOSP is stable on collider time scales and therefore, if it
is a gaugino, no isolated photons are expected.
The very brief remarks above are just to demonstrate that

unusual collider and cosmological signatures are definitely
possible. Clearly, it will be interesting to investigate the
various possibilities further. It is also important to study
more general hidden sector paradigms, beyond gauge
mediation.
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