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We study a two-dimensional lattice gas of atoms that are photoexcited to Rydberg states in which they

interact via the van der Waals interaction. We explore the regime of dominant nearest-neighbor interaction

where this system is intimately connected with a quantum version of Baxter’s hard-squares model. We

show that the strongly correlated ground state of the Rydberg gas can be analytically described by a

projected entangled pair state that constitutes the ground state of the quantum hard-squares model. This

correspondence allows us to identify a phase boundary where the Rydberg gas undergoes a transition from

a disordered (liquid) phase to an ordered (solid) phase.
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The study of quantum many-body models with long-
range interactions is a rapidly growing and flourishing field
[1–3] fueled by recent successes in creating ultra cold polar
molecules [4,5] as well as strongly interacting ultra cold
gases of Rydberg atoms [6,7]. Rydberg gases offer widely
tunable interatomic interactions which allow us to explore
correlated quantum matter in vastly different regimes,
ranging from supersolids to exotic spin models [8–18]. A
particularly interesting regime is achieved at densities
where the strong interaction between Rydberg states com-
petes with the excitation laser. In the extreme case, illus-
trated in Fig. 1(a), the simultaneous excitation of atoms
located within a spatial radius Rb (called the ‘‘blockade
radius’’) is forbidden [19]. This blockade effect renders
Rydberg atoms into ‘‘hard objects’’ whose mutual exclu-
sion induces strong correlations in the ground state. In a
one-dimensional setup this was analyzed in Ref. [18],
where it was shown that the ground state can even be
obtained analytically for certain combinations of the laser
parameters. A current challenge is to understand and to
identify interesting and useful features of strongly corre-
lated two-dimensional quantum systems. Since the situ-
ation in two-dimensions is substantially more involved,
exact analytical solution of strongly correlated two-
dimensional quantum systems are scarce.

In this Letter we present a detailed study of a two-
dimensional spin lattice gas motivated by recent experi-
mental achievements in creating Rydberg lattice systems
[20] and the future perspective to implement quantum spin
systems with polar molecules [1,21]. Our system is inti-
mately related to a quantum version of a hard objects
model—Baxter’s hard squares [22]—whose ground state
represents a coherent spin state with built-in nearest-
neighbor exclusion and belongs to the class of projected
entangled pair states (PEPS). We show that for certain
parameters this strongly correlated state provides an accu-
rate analytical description of the two-dimensional Rydberg
gas. This highlights the possibility of creating PEPS in a

physical system with binary interactions which is impor-
tant as such states are considered a valuable resource for
quantum information processing [23,24]. Furthermore, our
study yields insights into the phase structure of the
Rydberg gas allowing us to identify a quantum phase
transition from a disordered quantum liquid to an ordered
state [Fig. 1(b)].
The system under consideration consists of an ensemble of

atoms regularly arranged on a square lattice and coherently
photoexcited from their ground to a Rydberg nS state by a
laser with Rabi frequency� and detuning � [Fig. 1(a)]. We

FIG. 1 (color online). (a) Atoms arranged on a square lattice
and coherently photoexcited from their ground state jgi to a
Rydberg state jei with Rabi frequency � and detuning �. In the
regime of ideal nearest-neighbor blockade a Rydberg atom
entirely blocks the excitation of its four nearest neighbors
(crosses). Exciting a Rydberg atom is, thus, equivalent to placing
a hard square (dashed lines) centered on the position of the
Rydberg atoms on the lattice. The shaded area indicates
the range of the Rydberg-Rydberg interaction. (b) The phases
of the quantum hard-squares model [Eq. (2)] for different values
of the parameter � defined in the text. For � < �crit: liquid phase
in which both sublattices (solid and open circles) are populated.
For � > �crit: ordered phase with broken sublattice symmetry.
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focus on the situation with one atom per site in a deep large-
spacing optical lattice [25]. The interaction between ground-
state atoms at different sites is negligible, while Rydberg
atoms strongly interact with each other via a van der Waals
interaction Uij ¼ C6=jri � rjj6. Here, ri, rj denote the po-
sition vectors of the excited atoms, C6 is the interaction
coefficient and we define the interaction strength at nearest-
neighbor distance a as V � C6=a

6. In the following, we will
consider the regime Rb * a shown in Fig. 1(a), where the
interaction is so strong that the simultaneous excitation of
nearest-neighbor particles is completely blocked. As demon-
strated in [18], it is then convenient to work in the interaction
picture with respect to the nearest-neighbor interaction, since
theHamiltonian in this picture explicitly displays the effect of
the excitation blockade. Neglecting small corrections of order
�2=V it reads,

H ¼ �
X

k;m

�x
k;mP k;m þ �

X

k;m

nk;m

þ V

8

X

k;m

ðnk;mnkþ1;m�1 þ nk;mnkþ1;mþ1Þ: (1)

The Pauli matrix �x
k;m changes the state of the lattice site

ðk;mÞ � ri=a from down to up and vice versa with the
identification j "i � jei and j #i � jgi. The projector
nk;m ¼ 0, 1 determines if the site is occupied by a Rydberg

atom, andwe use its complement,Pk;m ¼ 1� nk;m, to define
a plaquette operator P k;m � Pk�1;mPk;m�1Pkþ1;mPk;mþ1.

In the following, we will refer to the terms of H that
solely depend on the density nk;m as ‘‘classical terms.’’

They describe the energy penalty to be paid if the laser is
detuned by � from resonance, and the interaction between
Rydberg atoms, where we have cut off the long-range tail
of Uij at next-nearest neighbors, since its strength quickly

decreases with increasing distance of the particles. In con-
trast, we will call the first term of Eq. (1) ‘‘quantum term.’’
It describes the coherent (de-)excitation of atoms at a rate
� and is a five-particle interaction term: A particle at site
(k, m) can only be excited, if all of its four nearest neigh-
bors are simultaneously in the ground state. As indicated in
Fig. 1(a), the action of the quantum term corresponds to
placing a hard square on the site of the excitation or
removing it from that site. Therefore, the realization of a
two-dimensional Rydberg lattice gas in the ideal nearest-
neighbor blockade regime is equivalent to implementing a
quantum lattice model of interacting hard squares which
are created and annihilated by the laser.

The many-body ground state of Hamiltonian (1) is not
known analytically. Its numerical determination by a
straightforward diagonalization of H is restricted to
small system sizes, due to the exponential growth of the
Hilbert space dimension with increasing particle number.
We therefore propose an alternative method to study the
ground state of the strongly interacting Rydberg lattice gas.
The main idea is to consider an auxiliary model system

whose many-body ground-state wave function is known
analytically and which possesses the same symmetry prop-
erties and the same quantum term as H. Using this wave
function as a variational input state it is then possible to
approximately determine the phase diagram of our original
problem.
Our candidate model system is a quantum version of

Baxter’s classical hard-squares model [22] on a square
lattice. Its Hamiltonian is of the so called Rokhsar-
Kivelson type [26]; i.e., it can be written in the form,

HHS ¼ �
X

k;m

hyk;mhk;m; (2)

with positive-semidefinite, self-adjoint operators,

hk;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

��1 þ �

s
½�x

k;m þ ��1nk;m þ �ð1� nk;mÞ�P k;m;

(3)

and a non-negative parameter �. The mathematical prop-
erties of the hk;m entail that the ground-state energy of HHS

is zero and, consequently, the ground-state wave function
j�i is annihilated by all hk;m. It is given by

j�i ¼ 1
ffiffiffiffiffiffi
Z�

p exp

�
��

X

k;m

�þ
k;mP k;m

�
j0i; (4)

where j0i denotes the empty lattice (all atoms in the ground
state), �þ

k;m ¼ ð�x
k;m þ i�y

k;mÞ=2 is the spin raising operator
at site (k,m) and Z� the normalization constant. Physically,

the many-body ground state of HHS is a coherent superpo-
sition of all many-particle states in which Rydberg atoms
are arranged in configurations compatible with the nearest-
neighbor (or hard-squares) exclusion. Each configuration
is weighted by a factor ð��Þn, where n is the number of
occupied lattice sites. The state j�i is a PEPS [27] and can
be seen as a coherent spin state with built-in nearest-
neighbor exclusion.
The normalization constant Z� is the partition function

of the classical hard-squares model with fugacity �2.
Hence, the parameter � controls the occupation of the
lattice. Using the partition function, classical observables
like the density of particles and density-density correla-
tions can be calculated. Interestingly, the expectation value
of nonclassical observables can also be calculated using
Z�, since they are connected to expectation values of

classical observables taken in the ground state j�i. For
example, the mean values of �x

k;m is given by h�j�x
k;mj�i �

h�x
k;mi� ¼ �2��1hnk;mi�.
The classical hard-squares model displays an order-

disorder phase transition between a liquid and a solid phase
with broken sublattice symmetry [22]. The thermal fluctu-
ations that drive this transition are mapped to quantum
fluctuations by the PEPS solution (4). Therefore, the quan-
tum hard-squares model will also undergo a liquid-solid
transition at a critical value �crit � 1:9. Here however, it is
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driven by quantum fluctuations [27] [cf. Fig. 1(b)]. Since a
order-disorder quantum phase transition is also anticipated
for ultra cold Rydberg gases [8–12] and since the
Hamiltonians (1) and (2) have the same symmetry proper-
ties, the state (4) appears to be a natural candidate for
performing a variational study of the phase diagram of
the Rydberg lattice gas.

To solidify this statement we will now quantify the
intimate connection of the Rydberg lattice gas problem
with the quantum hard-squares model. By multiplying
out the quantum hard-squares Hamiltonian (2) and com-
paring it termwise to Eq. (1), one finds that the quantum
term is identical in both cases. The classical terms of HHS

that are linear in nk;m are identical to those of H if we

choose the laser detuning such that �ð�Þ ¼ �ð��1 � 5�Þ.
In addition we can make some of the two-body terms equal
by choosing Vð�Þ ¼ 8��. These two choices define a
manifold (�-manifold) in parameter space ½�ð�Þ; Vð�Þ�
along which the Hamiltonian (1) becomes Hð�Þ ¼
H½�;�ð�Þ; Vð�Þ�. Note that along the �-manifold the
Rydberg Hamiltonian and HHS are similar but not equal,
i.e. HHS ¼ Hð�Þ þ�H. The difference operator �H con-
tains binary interactions between Rydberg atoms at dis-
tance 2a as well as three and four-body interaction terms
that are all completely absent in the Rydberg Hamiltonian
and, thus, cannot be accounted for by an appropriate
parametrization.

To see how close nevertheless the coherent state (4)
resembles the true many-body ground-state jGð�Þi of H
on the �-manifold,we compare the numerically determined

ground-state energy E ¼ hGð�ÞjHð�ÞjGð�Þi, as well
as the average fraction of excited atoms f ¼
N�1

P
k;mhGð�Þjnk;mjGð�Þi with the energy and excitation

fraction of the Rydberg gas calculated with j�i. In addition,
we compute the overlap jhGð�Þj�ij2 between the exact
ground state and hard-squares coherent state. Figure 2
shows the data for a 6� 6 lattice with periodic boundaries.
For small �, i.e., low Rydberg density, both wave functions
yield identical energies and lattice occupancies [Fig. 2(a)].
This agreement is also reflected in the overlap integral
[Fig. 2(b)], which shows that the many-body ground state
of the Rydberg gas in the low density regime (� < 0:3) is
virtually exactly given by a PEPS of the form (4). In the
opposite limit, � ! 1, the energies differ significantly, due
to the difference�H of quantum hard squares and Rydberg
gas Hamiltonian. However, we observe reasonable agree-
ment of the calculated densities as well as in the overlap.
This is because for large � the ground-state energy of both
the quantum hard-squares model as well as of the Rydberg
gas is minimized by the configuration with maximal occu-
pation of the lattice with hard squares. For intermediate �,
however, both calculations give different results for the
fraction of excited atoms and the overlap integral is small.
The remarkable point is that the exact ground state

jGð�Þi of Hð�Þ is still well approximated for any � by a
coherent state of the form (4). To see this, we introduce an
independent, variational parameter �, write the PEPS in
terms of this parameter and optimize j�i by minimizing
the energy functional h�jHð�Þj�i. To compute the func-
tional, we express it in terms of expectation values of
classical operators and numerically calculate them via the
partition function Z� using a transfer matrix method [28].

Comparing the exact ground-state energy with the varia-
tionally obtained one [Fig. 2(a)] we see excellent agree-
ment for all � as well as a very good agreement for the
fraction of excited atoms. The simple optimization proce-
dure also drastically improves the overlap [Fig. 2(b)],
which is well above 0.5 for most values of � and never
drops below 0.25 which is remarkable for a many-body
state in a Hilbert space of dimension 67 022 [29]. This
result suggests that the 2D Rydberg gas permits the prepa-
ration of a PEPS of the form (4) and that the hard-squares
coherent state (4) is well suited for carrying out a varia-
tional study of the phase diagram of the Rydberg lattice gas.
To determine the phase diagram of the Rydberg gas in

the whole parameter range (�, �, V) we minimize hHi� �
h�jHj�iwithH given by Eq. (1). The position at which the
functional becomes minimal is denoted by �min. The sys-
tem is in the disordered (liquid) phase, if �min < �crit,
where �crit is the transition point of the hard-squares model.
For �min > �crit it is in the ordered phase [cf. Fig. 1(b)].
The results of our variational approach are summarized

in the phase diagram shown in Fig. 3 as a function of the
scaled detuning � ¼ �=V and laser driving ! ¼ �=V. In
the region!>!1 � 0:14, the system exhibits two distinct

FIG. 2 (color online). (a) Energy of the 6� 6 Rydberg lattice
gas on the �-manifold (cf. red dashed line in Fig. 3). Red line:
exact ground-state energy of (1). Black line: energy calculated
using the coherent state (4) with the same parameter � as taken
for the parameterization of the � manifold. Squares: Energy
calculated by taking the PEPS with an independent parameter �
that minimizes h�jHð�Þj�i. Inset: Same for the fraction of
excited atoms. (b) Overlap between the exact ground state of
Hamiltonian (1) with the PEPS (4) using the parameter � (black)
and the optimized parameter � (squares). Inset: Optimized
parameter � as function of �. The scaling of the abscissae of
the insets is identical to those of the main plots.
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phases, a liquid and a solid phase. At large negative detun-
ing, the Rydberg gas favors the solid phase near half filling
(f & 0:5). The laser driving acts against the tendency of
the atoms to order, such that if j�j is reduced the system
undergoes a first order phase transition from the ordered
phase to the liquid state (solid black line in Fig. 3). Near the
phase boundary the energy functional hHi� has a double

well structure with the minima located on either side of
�crit. The transition is discontinuous, as the minima change
their relative heights when passing through the transition
(cf. inset of Fig. 3, which exemplifies this behavior along
the line A� B� C). We note that a first order liquid-solid
transition has also been found for the classical hard-squares
model with additional (attractive) next nearest-neighbor
interactions [30,31]. This together with the earlier demon-
strated accuracy of the variational state suggests that this
finding is not just a mere artifact of our variational ap-
proach. For !1 >!>!2 � 0:1, we observe a qualitative
change of the system’s behavior. Close to the phase bound-
ary, the energy functional still has two distinct minima;
however, both are located below �crit, indicating a first
order transition from a low- to an high-density phase
when reducing the detuning below j�j � 0:4. At ! ¼ !2

the transition line appears to terminate at a critical point.
Here the two wells of the variational energy hHi� merge

into a single minimum. Below ! ¼ !2 our variational
state j�i predicts a continuous crossover from the liquid
to the half filled state with increasing negative detuning. In
the limit ! ! 0 we expect two classically ordered phases,
one at quarter filling for 0> �>�0:5 and the staggered
phase at half filling for�0:5> �. The variational state j�i
cannot resolve these expected discontinuous transitions for
! � !2. We emphasize that the discussed features of the

phase diagram are a consequence of the long-range (be-
yond nearest neighbor) Rydberg interaction. For strict
nearest-neighbor interaction the variational calculation
predicts a significantly shifted transition line and a phase
transition from the empty lattice to a fully crystalline state
starting at � ¼ ! ¼ 0 (cf. yellow line in Fig. 3). We have
verified that including interaction terms that go beyond
next-nearest neighbors only marginally change the phase
diagram.
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FIG. 3 (color online). Variational phase diagram of the 2D
Rydberg lattice gas with nearest-neighbor blockade on a 16�
16 square lattice with periodic boundaries as function of the
scaled detuning � ¼ �=V and Rabi frequency ! ¼ �=V. The
dashed red line depicts the � manifold along which the data of
Fig. 2 have been determined. All other features are explained in
the text.
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