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We identify conditions under which correlations resulting from quantum measurements performed on

macroscopic systems (systems composed of a number of particles of the order of the Avogadro number)

can be described by local realism. We argue that the emergence of local realism at the macroscopic level is

caused by an interplay between the monogamous nature of quantum correlations and the fact that

macroscopic measurements do not reveal properties of individual particles.
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Nonlocality is one of the most striking properties of
quantum mechanics. Two distant observers, each holding
half of an entangled quantum state and performing appro-
priate measurements, share correlations which are non-
local: in 1964, John Bell used astonishingly simple
reasoning in the form of an algebraic inequality (Bell
inequality) to demonstrate that the predictions of quantum
theory cannot be explained by a model consisting of local
variables (local realism) [1]. His findings have been con-
firmed in numerous experiments in which various loop-
holes, resulting from experimental deficiencies, were
closed individually [2]. Although there is still no conclu-
sive experiment that simultaneously closes all the loop-
holes, most scientists think that on the microscopic scale
the world is not local realistic.

In contrast, the macroscopic world we experience is
described by classical physics, which is a special case of
a local realistic theory. Note that, local realism does not
rule out entanglement which is a manifestation of quantum
weirdness [3]. An interesting question to ask is how a local
realistic macroscopic world emerges from the microscopic
scale, on which level it cannot be described by local
realism. A number of resolutions to this question have
been suggested. The more radical ones, the so-called col-
lapse models [4], predict that quantum mechanics fails for
sufficiently complex systems. Another approach is to look
for classicality as a limit of quantum phenomena.
The decoherence programme derives the lack of superpo-
sition of the pointer state of the measuring apparatus from
an inevitable interaction between the quantum system and
its environment [5]. Unlike these previous approaches,
which have sought to explain why quantum properties
such as entanglement are not present in macroscopic sys-
tems, we instead ask why, given limited experimental
capabilities, we have never found correlations in a macro-
scopic system which cannot be explained by a local real-
istic theory. For a related, but different approach to this
question; see [6].

The purpose of this Letter is to consider the correlations
that we can reasonably measure on macroscopic samples
consisting of spins numbering on the order of the Avogadro
number (1023 particles). With existing experimental capa-
bilities [7], it is impossible to independently, coherently
operate on every individual particle and there might even
be fundamental reasons why such manipulations would
never be possible [8]. We show that if the number of
measured particles is large enough, a local realistic de-
scription emerges, regardless of the quantum state of the
whole system, even if this quantum state is highly en-
tangled (note that highly entangled states between macro-
scopic systems have been prepared in the lab, for instance
[9]). The roots of the local realistic behavior are the mo-
nogamous nature of quantum correlations [10,11] and the
fact that macroscopic measurements do not reveal proper-
ties of individual particles. We note that this local realistic
macroscopic limit is more general than classical physics
itself and it is an interesting problem to identify classical
physics within a set of local realistic theories.
We first show that quantum mechanical predictions for

macroscopic correlations are described by effective states
which admit explicit local realistic models, similar to those
of Ref. [12] for any number of measurement settings
smaller than the number of particles in the sample.
Furthermore, in some cases the effective states satisfy an
even stronger condition derived in Ref. [13]. Finally, we
prove that all macroscopic correlations of the physically
important rotationally invariant states (such as thermal
states of Heisenberg spin Hamiltonians or ground states
of high temperature superconductors) have a local and
realistic description regardless of the number of measure-
ment settings.
Macroscopic measurements.—Consider a macroscopic

sample composed of many microscopic spins. This is often
a good approximation to systems such as magnetic mate-
rials and metals [14]. The simplest observables to measure
are different directions of magnetization in macroscopic
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parts of the system. The outcome of a magnetization
measurement does not reveal information about the spin
projections of individual particles; there are many configu-
rations of individual spin projections that give the same
total magnetization. The situation is therefore analogous to
statistical mechanics, where one macrostate is realized by
the averaging over an enormous number of microstates.
Moreover, in a realistic experiment such as those per-
formed in [7], where a macroscopic region of the sample
is measured, one obtains directly the average value of
magnetization with vanishingly small fluctuations without
many repetitions of the experiment. The detailed probabil-
ity distribution that determines the average value is, for all
practical purposes, inaccessible.

Macroscopic correlations.—We now divide a system of
many spins into several regions X ¼ A; B; . . . ; K and study
correlations between (generalized) magnetization observ-
ables of each region (see Fig. 1). The spins can be of
arbitrary local Hilbert space dimension, we only require
that within a region they are all the same dimension, dX
(qudits), and there are NX of them, enumerated by x ¼
1; . . . ; NX. Within each region, we consider SX sets of

measurement operators (POVMs) EX;x
i;j . Each set, indexed

by i satisfies a completeness relation over the possible

outcomes j (of arbitrary number) such that
P

jE
X;x
i;j ¼

1dX . These can be used to specify the operator of general-

ized magnetization in region X as

M X
i ¼ XNX

x¼1

X

j

fðjjiÞEX;x
i;j ; (1)

the usual magnetization being the case of fðjjiÞ ¼ j. We
assume, as a reflection of the macroscopic nature of the
measurements, that POVM elements are the same for all
particles within a region, and denote such elements as
EX
i;j where the particle index is skipped. Because of this

assumption, the correlations between macroscopic

measurements in a state �, E~i ¼ Trð�MA
iA
� . . . �MK

iK
Þ,

are described by an effective positive semidefinite operator
of only K spins

�eff ¼ 1

NA . . .NK

X

a2A...k2K

�ab...k; (2)

where �ab...k is the reduced density matrix of the original
state � on just spins a to k, one from each region. The
formula for the correlations now reads

E ~i ¼
�YK

X¼A

NX

�X

~j

�YK

X¼A

fðjXjiXÞ
�

Pð ~jj~iÞ; (3)

where ~j ¼ ðjA; . . . ; jKÞ is a vector of measurement out-

comes and Pð ~jj~iÞ ¼ Trð�effE
A
iA;jA

� . . . � EK
iK;jK

Þ gives the

probability to obtain these outcomes if the effective state is

measured with settings ~i ¼ ðiA; . . . ; iKÞ.
Local realistic models.—If the states �ab...k in Eq. (2)

were arbitrary, then Pð ~jj~iÞ could violate a Bell inequality.
However, these states must be compatible with a global
state of the system which imposes a trade-off between their
correlations; i.e., any failure to violate a Bell inequality is a
consequence of the monogamy of correlations in the sys-

tem. We show that Pð ~jj~iÞ admits a local hidden variable
(LHV) model if the number of settings in a region does not
exceed the number of particles, i.e. SX � NX. It then
follows from Eq. (3) that also the set of correlations E~i

obtained from the state � admits a model. The crucial
technical insight is that the effective state �eff has a sym-
metric extension and therefore an extended version of the
results of Ref. [12] apply to it. Generally speaking, a
K-qudit state �K admits an N-qudit symmetric extension
�N if all K-qudit reduced operators of �N are given by �K.
In our case, the symmetric extension of �eff can always be
obtained from the initial state � by making it permutation-
ally invariant

�N ¼ 1

NA! . . .NK!

X

�A...�K

ð�A � . . . ��KÞ

� �ð�y
A � . . . ��y

KÞ; (4)

where the normalization factor counts the number of per-
mutations�X of particles within each regionX. Clearly, all
the K-qudit reduced operators of �N are the same, and are
given by �eff . Note that�N is a state of

P
XNX qudits which

we call ‘‘virtual particles.’’
Now we are in a position to present the proof of exis-

tence of an LHV model based on the symmetric extension
of �eff . We use the well known result of [15], which states
that if there exists a joint probability distribution for the
outcomes of measurements, there is a LHVmodel for these
measurements. When SX ¼ NX for all regions X, the sym-
metric extension replaces the effective state �eff by the
state �N of

P
XSX virtual particles. Therefore, instead of

FIG. 1 (color online). The three stages of the LHV strategy
outlined in the text. (i) A system with four regions (X ¼ A, B, C,
D) of NX particles (shown as circles), measured with SX different
settings. As explained in the text, an effective state �eff for these
measurements can be found and is shown in (ii) where the
squares depict effective particles. (iii) denotes the symmetric
extension of �eff to a state �N of SX particles (depicted by circles
surrounding squares) in each region. In (iii), all the SX measure-
ments in each region X commute, implying the existence of the
joint probability distribution and therefore, an LHV model for
the state in (i).
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measuring SX noncommuting observables on the Xth par-
ticle of �eff we measure all SX observables, one on each
virtual particle of �N . This procedure reproduces all the
statistics that would be obtained if measurements were
performed on �eff itself. Since the measurements per-
formed on different virtual particles commute, the joint
probability distribution for the observables measured on
�eff exists. In this approach, the local hidden variables are
given by the sequence of measurement outcomes for differ-
ent settings in each region. Each such hidden variable
occurs with the probability given by the corresponding
joint probability distribution. This procedure to show the
existence of an LHV model for �eff is illustrated in Fig. 1.

The result readily extends in two ways. Firstly, observe
that in the SX measurement settings, any two can be set
equal to each other, and the result still holds. Thus, in fact,
the result holds provided all SX � NX. Secondly, we can
examine many-body observables. Magnetization is just a
one-body observable because the POVM elements in
Eq. (1) involve only one particle. More generally,
M-body observables contain POVMs for M particles in
each region. This has the knock-on effect of simply rescal-
ing the limiting number of Bell measurements to NX=M,
assuming this is an integer. So, a system of say 1023

particles divided into 107 partitions, and involving
107-body observables would still require at least 109 mea-
surement settings to possibly measure some violation of a
Bell inequality, which we consider highly infeasible.

This no-go theorem gives a very strong bound on the
degree of control we would need over large systems for
there to possibly be a violation of a Bell inequality. Indeed,
it is tight, at least for simple cases. Clearly, if NA ¼ NB ¼
1 and SA ¼ SB ¼ 2, one violates the CHSH inequality. We
also verified that for NA ¼ 1, NB ¼ 2 and SA ¼ 3, SB ¼ 3
there exist three-qubit states for which the Collins-Gisin
inequality is violated [16].

Constraints on symmetric extensions.—We now restrict
our attention to two measurement settings per region and
an effective state of many qubits. We show that in this
scenario, if a state has a symmetric extension to an ade-
quate number of qubits, not only do its correlations admit a
LHV model, but they also satisfy the sufficient condition
for the existence of a LHV model derived in Ref. [13]; i.e.,
they are a proper subset of all possible LHV models. It was
shown there that a sufficient condition for a LHVmodel for
a two-setting Bell experiment reads

~T � ~T � X

lA;...;lK¼fx;yg
T2
lA...lK

� 1; (5)

for any choice of orthogonal local coordinate directions ~x
and ~y (and hence for any pair of local settings), where
T� ¼ Trð��Þ denotes the correlation functions for a given
� and some tensor product of Pauli operators, �.

Consider a K-qubit state, �K, with symmetric extension
�N involving N ¼ P

K
X¼1 NX qubits. We first prove that

condition (5) is satisfied if NX � 2X�1. To this end, pick
up one particle in A, two in B; . . . ; 2K�1 in region K and
draw a graph of a binary tree in which vertices are the
particles and different levels correspond to different values
of K; i.e., we have one particle on level A connected to two
particles on level B, each of which is connected to two
different particles on level C and so on. The existence of a
symmetric extension�N implies, in particular, that every of
its reduced K-qubit density operators �ab...k corresponding
to a path from the root to the leaves of the tree is the same

as �K, so TðAB...KÞ
lAlB...lK

¼ Tðab...kÞ
lAlB...lK

, and

TðAB...KÞ
lAlB...lK

¼ 1

2K�1

X

k

Tðab...kÞ
lAlB...lK

; (6)

where the normalization factor counts the reduced K-qubit
density operators of the paths. Note that once K’s qubit, k,
is specified, the path, and hence all the other K � 1 qubits,
is uniquely specified.
That we satisfy (5) uses the monogamy result of [17],

where it was shown that any set of correlation functions
T�i

, with �2
i ¼ 1 and for which all �i pairwise anticom-

mute, satisfies the bound
P

iT
2
�i

� 1. Our approach is to

subdivide the set of correlations in ~T between a set of

mutually orthogonal vectors ~WðyÞ for y 2 f0; 1gK�1,

~T ¼ 1

2K�1

X

y2f0;1gK�1

~WðyÞ; (7)

such that all correlations in each vector come from pair-
wise anticommuting Pauli observables, and hence the
length of each will be bounded by 1, ultimately bounding

the length of ~T by 1. The set of 2K correlation functions in a

given vector ~WðyÞ is given by the rows of a matrix which
divides intoK column blocks, X, each specified by a matrix

1 X�1 � 1þ yX�1

2� yX�1

� �

� 1K�X

where 1X�1 is the 2
X�1 � 2X�1 identity matrix, and 1K�X

is a column vector of 2K�X ones. The elements of the
matrix, i, translate into using a Pauli matrix �i. An illus-
trative example is provided in Table I.
It is now easy to see that the operators of the rows

mutually anticommute (for general K, this is easily proved
by induction). Different values of y just correspond to
permutations of elements within the block columns, and
do not alter the anticommutation properties. According to

Ref. [17], each of the 2K�1 vectors ~WðyÞ has length no
greater than 1, and therefore Eq. (5) is satisfied.
In the above derivation, the number of particles per

region is exponential in the number of regions and the
most densely populated region contains 2K�1 particles.
As a consequence, for us to prove that the condition (5)
holds, the maximal number of regions into which N qubits
can be divided is K ¼ OðlogNÞ. This bound can be im-
proved such that the highest population per region is given
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by d2K�2

K�1e, using certain modifications of the presented al-

gorithm (see [18] for further details). Moreover, as we did
not prove that our algorithm is optimal, perhaps a stronger
bound can be derived. It is also interesting to explore the
relationship between the sufficient condition (5) and the
existence of a symmetric extension for the state.

Rotationally invariant systems.—Stronger results
can be proved for restricted classes of state �, such as N
qubit rotationally invariant states, � ¼ ðU � . . . �UÞ
�ðUy � . . . �UyÞ, for all single qubit unitaries U. This is
a wide class of physically important states, including ther-
mal states of the Heisenberg model. We show that macro-
scopic correlations measured on such states admit a LHV
model no matter how many measurement settings are
allowed.

Any reduced density matrix �ij obtained from a rota-

tionally invariant density matrix � is also rotationally

invariant, i.e., �ij ¼ U �U�ijU
y �Uy ¼ Vijjc�i�

hc�jij þ ð1� VÞ 1i�1j

4 [3]. Thus, any two-party effective

state �eff inherits the same property:

�eff ¼ Vjc�ihc�jAB þ ð1� VÞ1A � 1B

4
; (8)

where � 1
3 � V � 1. It was proven in Ref. [19] that for

� 1
3 � V � 0:66 this state admits a LHV description for all

sets of projective quantum measurements. The upper
bound on this range can be extended to 2=3 by invoking
the results of [20] within the formalism presented in [19]. It
is also known [21] that if p � 5

12 , there is no Bell inequality

violation at all, even allowing for POVMs. From our prior
description of �eff , we can say that

V ¼ 1

NANB

X

ij

Vij (9)

and, from singlet monogamy [22], one can prove that

V � Rab þ 2

3Rab

(10)

where Rab ¼ maxðNA;NBÞ. Thus, provided our sample
contains more than two qubits and is divided into two
regions, we can never violate a macroscopic Bell inequal-
ity (of any number of settings) composed of projective
measurements. If NA or NB � 8, there are no Bell inequal-
ities whatsoever that can be violated.
Conclusions.—We have studied the conditions under

which one can sustain a local realistic description of cor-
relations between measurements on macroscopic group-
ings of spins. For a large system of spins (N � 1023) in an
arbitrary quantum state, partitioned into k � 2 regions,
each containing a number of spins of the order of N

k ,

provided the number of measurement directions in each
region is smaller than the number of particles in the region,
a LHV model that is consistent with the measurable ob-
servables exists. Even when such a model describes the
correlations, entanglement can still be detected between
the different regions using similar measurements. There
are some physically important classes of states, such as
rotationally invariant ones, which can never violate a Bell
inequality formed from these correlations for any number
of measurement settings. The monogamy of certain quan-
tum correlations and the lack of individual addressability in
macroscopic systems was seen to lie behind this manifes-
tation of local realism. Our proof of the emergence of local
realism in macroscopic systems was derived using the
quantum formalism. It would be interesting to demonstrate
this from the principle of no-signalling and a reasonable
notion of macroscopic measurements. It will also be inter-
esting to impose that two-body correlators can only be
measured between spins which are neighbors on a lattice.
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Diósi, Phys. Lett. A 120, 377 (1987); R. Penrose, Gen.
Relativ. Gravit. 28, 581 (1996); A. Bassi, J. Phys. Conf.
Ser. 67, 012013 (2007).

[5] W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[6] A. Peres, Quantum Theory: Concepts and Methods

(Kluwer Academic, Dordrecht, 1995); D. Poulin, Phys.
Rev. A 71, 022102 (2005); J. Kofler and Č. Brukner, Phys.
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