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Because of strong flux confinement in mesoscopic superconductors, a ‘‘giant’’ vortex may appear in the

ground state of the system in an applied magnetic field. This multiquanta vortex can then split into

individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature.

Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant

vortex results in a clear jump in measured heat capacity versus external drive. We attribute this

phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex

core(s), and further link it to a sharp change of the magnetic susceptibility at the transition—proving that

the formation of a giant vortex can also be detected by magnetometry.
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The influence of quantum confinement on superconduct-
ing condensates is one of the prominent research directions
in low-temperature physics of the last decade. Vortex
matter in conventional but mesoscopically tailored super-
conducting samples has especially generated tremendous
interest and activity in the wide scientific community.
Namely, vortices are of direct relevance to cold gases and
Bose-Einstein condensates [1]; interaction of vortices with
artificial pinning sites has analogues in colloidal systems
and molecular crystals [2]; the inhomogeneous field of
vortices can confine spin textures in a nearby magnetic
semiconductor—thus manipulation of vortex states can be
useful in spintronics [3]; the ‘‘ratchet’’ dynamics of vorti-
ces in asymmetric pinning profiles is directly related to
biological microdevices that separate particles by convert-
ing random motion into directed motion [4].

One of the most puzzling questions in the area of vortex
matter in submicron samples is the distinction between two
allotropies of a vortex state—a ‘‘giant’’ vortex, where all
vortices merge into a single singularity, and a multivortex,
where all vortices can be individually resolved. In type-II
superconductors, transitions between the latter two states
are of second order, following the increasing lateral com-
pression by, e.g., increasing screening currents in increas-
ing magnetic field [5], or increasing temperature which
makes the sample effectively smaller in terms of the super-
conducting length scales. Even in numerical calculations, it
is very difficult to pinpoint the exact value of parameters
for the giant-to-multi crossover, as the order parameter is
severely suppressed between vortices in close proximity. It
is therefore no surprise that imaging experiments could not
verify the existence of a giant vortex beyond reasonable
doubt [6]. Several years ago, Kanda et al. conveyed a
clever transport measurement, where distinction between
giant and multivortex states was made by symmetry match-
ing between the vortex configuration and the location of

several tunnel junctions [7]. Although not always conclu-
sive (e.g., if sample and vortex arrangement match in
symmetry), this is the best known method to date for
giant-vortex detection.
In this Letter, we present a universal method for the

observation of formation and decay of multiquanta vortex
states. Our theoretical simulations indicate that the
experimentally measured heat capacity of a mesoscopic
superconductor as a function of the magnetic field or
temperature can unambiguously reveal such transitions.
The underlying reason can be traced back to the behavior
of the local density of states for quasiparticles, and we
demonstrate a direct link between the heat capacity and the
sample magnetization. With recent advances in calorime-
try [8] and magnetometry [9] of submicron samples, our
findings are of immediate relevance to current experimen-
tal efforts.
The Ginzburg-Landau (GL) formalism has been exten-

sively used in the past to gain theoretical insight in the
physics of mesoscopic superconductors. The core of the
approach is the GL energy functional

G ¼
Z �

�jc j2 þ 1

2
jc j4 þ 1

2
jð�ir�AÞc j2

þ �2ðh�HÞ2
�
dV; (1)

describing the difference in Gibbs free energy between the
superconducting (S) and normal (N) state in units of G0 ¼
H2

c=8�. Here � denotes the GL parameter and determines
screening of the applied magnetic field H from the given
superconducting material. In Eq. (1) all distances are
scaled by the coherence length �, the vector potential A

by c@=2e�, the magnetic field h by Hc2 ¼ c@=2e�2 ¼
�

ffiffiffi
2

p
Hc, and the order parameter c by its equilibrium value

in the absence of the magnetic field. The minimization ofG
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is numerically equivalent to solving two coupled GL equa-
tions, and for details of this procedure we refer to Ref. [10].
Once a stable solution is found, we are able to calculate the
specific heat of the superconducting state from the relation
C ¼ �T@2G=@T2 [11], as a difference between the total
heat capacity and that of the sample in the normal state, in
units of C0 ¼ H2

cð0ÞV=ð8�TcÞ. We start from the equilib-
rium states, increase or decrease the temperature of the
system by 10�4Tc, and calculate numerically the second
derivative. In what follows, we apply this method for a
superconducting disk, a simple geometry already acces-
sible both theoretically [5] and experimentally [6–9].

Figure 1 shows the energy of all the vortex states found
in an aluminum superconducting disk of radius R ¼
850 nm and thickness d ¼ 100 nm, at T ¼ 1:1 K [we
use �ð0Þ ¼ 100 nm, � ¼ 1:2, and Tc ¼ 1:38 K [12] ].
Because of the stronger interaction of the flux quanta
with lateral boundaries for increased vorticity, all states
in Fig. 1 with L > 5 are giant vortices. However, for 2<
L � 5 multivortex states can be found at lower magnetic
field, which are compressed into a giant vortex at higher
applied field. This is a gradual, second-order transition,
and is therefore invisible in the free energy curves [5]. For
clarity, we made a distinction between the multi- and
giant vortex in Fig. 1 by dashed and solid lines, respec-
tively. In what follows, we discuss the repercussions of the
latter transition on the heat capacity of the sample.

Using attojoule calorimetry, Ong et al. [13] found that
the heat capacity of mesoscopic disks is directly linked to
the vorticity, exhibiting jumps as a function of the magnetic
field—at transitions between vortex states. We argue here
that the heat capacity depends not only on the number of
vortices in the sample, but also on their configuration.

Namely, the susceptibility of the sample to heating is
linked to the kinetic energy of the Cooper pairs in and
around the vortex core(s), and the changes in their trajec-
tory upon the multi-to-giant vortex transition. In Fig. 2, we
show the calculated heat capacity as a function of applied
magnetic field for vortex states with vorticity 2 and 3, both
exhibiting multi-to-giant vortex transition in Fig. 1. For
both cases, the general trend of increasing heat capacity
with field is interrupted exactly at the multi-to-giant vortex
transition, where a sharp decrease of heat capacity is found.
In what follows, we show that the cause of the observed

change in heat capacity during the merging of vortices is
the changing local density of states (LDOS) for quasipar-
ticle excitations inside the vortex cores. Actually, already
from the early theoretical works (see Ref. [14]), we know
that the bound state spectrum inside the vortex is also a
function of momentum along the vortex line; as a result,
the lowest bound state energy for winding number L > 1 is
L times larger than that of winding number 1. Therefore,
one expects that the low-energy states are pushed toward
higher energies during merging of individual vortices into
a giant vortex. To give a quantitative measure of this
process, we first obtain the order parameter c and vector
potential A of the equilibrium states from the GL calcu-
lation, which then serve as inputs for the microscopic
Eilenberger equation

� i@vF �rĝðr;i~"nÞ¼
��

i~"n ��ðrÞ
�yðrÞ �i~"n

�
; ĝðr; i~"nÞ

�
; (2)

where i~"nðrÞ ¼ i"nðrÞ þ vF � ecAðrÞ, and ĝ ¼ ð ig
�fy

f
�igÞ

with normalization ĝðr; i~"nÞĝðr; i~"nÞ ¼ ��2l̂. Equation
(2) is further parametrized by f ¼ 2a

1þab , f
y ¼ 2b

1þab , and

g ¼ 1�ab
1þab , where functions a and b now satisfy the inde-

pendent nonlinear Ricatti equations [15]. In the next step,
the LDOS is evaluated from

NðE; rÞ ¼ N0

Z 2�

0

d�

2�
�ð�ÞRegði"n ! Eþ i�; r; �Þ; (3)

FIG. 1 (color online). The energy of different vortex states for
an Al superconducting disk of radius R ¼ 850 nm and thickness
d ¼ 100 nm, at T ¼ 0:8Tc, for taken �ð0Þ ¼ 100 nm and � ¼
1:2. Solid lines indicate giant-vortex states and dashed lines
represent multivortex states. Insets show the density of the
superconducting condensate for a L ¼ 2 vortex state in multi
and giant form.

FIG. 2 (color online). The heat capacity as a function of
magnetic field, for states with vorticity 2 and 3 of the sample
considered in Fig. 1. The insets depict the vortex configuration
before and after the multi-to-giant vortex transition.
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where � ð>0Þ is a small real constant. To obtain gði"n !
Eþ i�; r; �Þ, we solve the Eilenberger equations for
�� iE instead of the Matsubara frequency !n. In order
to find the LDOS, the above equations should be solved for
a bundle of trajectories with different angle �, running
through the given point r and energy ". In our calculation
we consider only specular reflection for trajectories en-
countering the outer boundary of the sample.

Early theoretical works already considered LDOS of a
single vortex [16]. Further, in Ref. [17] LDOS was calcu-
lated semiclassically for a multivortex vs the case of a giant
vortex, for selected vorticities and assumed size and dis-
tribution of the vortex cores. Here we present the full
evolution of the LDOS of quasiparticle excitations in a
mesoscopic superconducting disk, during the multi-to-
giant vortex transition as a function of the magnetic field,
where at each step we recalculate the distribution of the
superconducting order parameter. In Fig. 3, we plot the
zero-energy density of states NðE ¼ 0; TÞ integrated over
the sample as a function of the applied magnetic field, for
the L ¼ 3 vortex configuration. NðE ¼ 0; TÞ increases
with applied magnetic field, as in the case of an isolated
vortex [16]. When the giant vortex is assembled from the
multivortex molecule, the LDOS profile changes from
several individual peaks located at each vortex to a ringlike
bound state with (without) an enclosed peak for odd (even)
vorticity (as in Ref. [17]). Bound states are also found near
the sample boundary, due to their lowered (nonzero) gap in
the presence of strong circular Meissner currents. The
representative contour plots of LDOS for L ¼ 3 are shown
in Fig. 3 as insets. As our main observation, we point out a
clear drop of NðE ¼ 0Þ vs the magnetic field at the multi-
to-giant vortex transition (see Fig. 3), where the LDOS

profile goes through a change of symmetry from a three-
fold to a circular symmetric one. We thus confirm that
the evolution of LDOS with magnetic field is directly
linked to the specific heat and the thermal conductivity
of the sample. To enforce this argument, the LDOS can be
expressed as NðE; TÞ=N0 ¼ NðE ¼ 0; TÞ þ �EjEj=�0,
and NðE ¼ 0; TÞ=N0 ¼ �0 þ �kT=Tc. Through the rela-
tion CðTÞ=T ¼ ð2=TÞR1

0 dE½ENðE; TÞ@fðE; TÞ=@T�, us-

ing the Fermi distribution function fðE; TÞ, one obtains
CðTÞ=ð�nTÞ � NðE ¼ 0; TÞ=N0 þ �EjEj=�0 which un-
ambiguously shows the link between the calculated curves
in Figs. 2 and 3.
The jump of heat capacity between different vortex

phases can also be expressed using other thermodynamic
arguments. The discontinuity in the specific heat at a phase
transition (at field H�) can be calculated as [18]

Ci � Cj ¼ �T

�
dH�

dT

�
2
��

@M

@H

�
i
�

�
@M

@H

�
j

�
; (4)

whereM denotes sample magnetization. Here we apply the
above expression to the multi-to-giant vortex transition,
where i represents the vortex state of vorticity L just prior,
and j represents the L vortex state just after the transition.
Knowing the result for heat capacity vs H at the multi-to-
giant vortex transition, we therefore expect to see similar
features in the magnetic susceptibility 	 ¼ @M=@H. We
calculate the magnetization M as expelled magnetic field
from the sample M ¼ ðhhi �HÞ=4�, where hhi is the
local magnetic field averaged over the sample volume.
The results of this calculation are shown in Fig. 4. They
(i) confirm the link between (independently calculated)
sharp changes in heat capacity and 	 as a function of the

FIG. 3 (color online). The integrated zero-energy density of
states (LDOS) as a function of the magnetic field for L ¼ 3, for a
superconducting disk with the same parameters as in Fig. 1. (a)–
(c) are the representative contour plots of LDOS in the disk,
at indicated magnetic fields. Interestingly, Nð0Þ½a� � Nð0Þ½b� �
Nð0Þ½c�.

FIG. 4 (color online). The multi-to-giant vortex transition re-
vealed through the sharp change in magnetic susceptibility as a
function of applied magnetic field, showing direct correlations
with the heat capacity, for states with vorticity 2 and 3. Shaded
areas indicate the observed regions of giant-vortex formation in
both quantities.
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magnetic field, and (ii) show that assembly of a giant
vortex in superconductors can be detected even by conven-
tional magnetometry.

The above prediction is of immediate relevance to ex-
periments, since both calorimetry and magnetometry are
readily performed on mesoscopic superconductors. Of
course, the question of sensitivity and resolution of the
measurement is an open one, and we address this issue in
Fig. 5. First, we determined the multi-to-giant vortex tran-
sition field H� as a function of the size of the Al disk. For
all considered vorticities (L ¼ 2� 4), H� was found to
increase with the radius of the sample. We then scanned the
heat capacity and magnetic susceptibility versus applied
field for every size of the sample, and recorded the size of
the observed jump between values prior and after H�. In
Fig. 5 we show the absolute and relative size of the jump of
both magnetic susceptibility (b) and heat capacity (c) at
temperature 1.1 K.We found that the susceptibility shows a
clearer signal at the multi-to-giant transition for lower
vorticity, whereas corresponding discontinuity of heat ca-
pacity is more pronounced at higher vorticity. Note, how-
ever, that �C and �	 should be directly proportional,
according to Eq. (4). They indeed are, when susceptibility
is calculated by 	 ¼ @2G=@H2, while we here used the
experimental definition of magnetization as the flux ex-
pelled from the sample (which is directly measured by Hall
magnetometry).

In summary, we demonstrated that second-order tran-
sitions between multi- and giant-vortex states in meso-
scopic superconductors can be detected using calorimetry.
The local density of states for quasiparticles in and
around vortex cores changes when the vortex configura-
tion changes, which affects the heating properties of the
system. The observed sharp change in the heat capacity at
the multi-to-giant vortex transition can also be linked to
the magnetic susceptibility, enabling the observation of
this transition by Hall magnetometry. Our results are
therefore of immediate relevance to experimental efforts
in the field, and further work is needed to generalize our
findings to other systems, such as, e.g., Bose-Einstein
condensates [1].
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