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We present the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an

underlying auxiliary Fermi liquid Green’s function that is further caparisoned by extreme correlations.

The theory leads to two parallel hierarchies of equations that permit iterative approximations in a certain

parameter. Preliminary results for the spectral functions display a broad background and a distinct T

dependent left skew. An important energy scale �ð ~k; xÞ emerges as the average inelasticity of the FL

Green’s function, and influences the photoemission spectra profoundly. A duality is identified wherein a

loss of coherence of the ECFL results from an excessively sharp FL.

DOI: 10.1103/PhysRevLett.107.056403 PACS numbers: 71.10.Fd

Introduction.—Correlated electron systems attract two
distinct approaches. An intermediate to strong coupling
approach is used when the interaction U is comparable to
the band width 2W, and has seen some success in recent
times [1]. On the other hand, Anderson [2] has argued that
myriad experiments on high Tc superconductors require a
better understanding of the t-J model physics. This model
sets U ! 1 right away, i.e., leads to extreme correlations
and involves Gutzwiller projected Fermi operators that are
non canonical. Thus Wick’s theorem is immediately lost,
and perturbative schemes encoding the Feynman Dyson
approach become useless. Since this approach is at the root
of most current many body physics text books, the task of
understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a
powerful and attractive alternative. It is fundamentally non
perturbative, where Wick’s theorem is bypassed by dealing
with suitable inverse Greens functions. Conventional many
body theory for canonical Fermions can also be cast into
this approach, and leads to the standard results. In Ref. [3]
(henceforth referred to as paper I), the author has recently
applied the Schwinger method to the t-J model, and found
a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@�i ��ÞGði; fÞ ¼ ��ði; fÞf1� �ðiÞg �V i � Gði; fÞ
� Xði; �jÞ � Gð�j; fÞ � Yði; �jÞ � Gð�j; fÞ;

(1)

where � is the chemical potential and an implicit integra-
tion over space-time variables such as �j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ �tði; jÞ½DðiÞ þDðjÞ�
þ 1

2Jði; �kÞ½DðiÞ þDð �kÞ��ði; jÞ
Yði; jÞ ¼ �tði; jÞ½1� �ðiÞ � �ðjÞ�

þ 1
2Jði; �kÞ½1� �ðiÞ � �ð �kÞ��ði; jÞ:

(2)

In the above expression [6], we used �ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ�1�2

¼ M ��2 ��1
�1�2, and

D�1�2
ðiÞ ¼ �1�2

�

�V
��1 ��2
i

. The added (bosonic) source term

V �1�2

i ð�iÞ is central to this approach; it is a space-time
dependent field that couples to the charge and
spin densities through a term in the action:P

i�

R�
0 d�V

�1�2

i ð�ÞX�1�2

i ð�Þ, where X�1�2

i is the spin and

density operator at site i that acts as j�1ih�2j.
An important technical problem highlighted in I is to

deal with the time dependence of the �ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; �bÞ ��ð �b; bÞ; (3)

and express �ðiÞ ¼ ½gði; �jÞ ��ð�j; iÞ�k. The object g is an
auxiliary FL Green’s function and �ð �b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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Antiperiodic boundary conditions Gð0; �fÞ ¼ �Gð�; �fÞ
and Gð�i; 0Þ ¼ �Gð�i; �Þ imply that both factors g and
� are Fourier transformed using fermionic Matsubara
frequencies. We define the inverse Green’s function
g�1ða; �bÞ � gð �b; bÞ ¼ 1�ða; bÞ, and then a vertex function
��1�2

�3�4
ðp; q; rÞ ¼ � �

�V
�3�4
r

fg�1
�1�2

ðp; qÞg. Thus g, � and

g�1 are matrices in the spin space, and the vertex � has
four indices. We also define a linear operator

Lði; fÞ ¼
�
tði; �jÞ�� � gð�j; fÞ � 1

2
Jði; �jÞ�� � gði; fÞ

�

�
�

�

�V �
i

þ �

�V �
�j

�
; (4)

where the matrix ��
�1�2

¼ �1�2. The asterisk is used

as a place holder that transmits the spin indices
(after conjugation) of the � matrix to the source matrix
V in the functional derivative. This notation used is
illustrated in component form by � � ���

�a�b
� � ��=�V �

�j
¼

� � ��a�b � � ��=�V ��a; ��b
�j

.

A useful chain rule for the functional derivative is noted

DðrÞGða; bÞ ¼ �� � gða; �cÞ ���ð�c; �d; rÞ � Gð �d; bÞ
þ �� � gða; �bÞ �

�
�

�V �
r

�ð �b; bÞ
�
: (5)

Using this chain rule, we see that

Xði; �jÞ � Gð�j; fÞ � �ði; �bÞ � Gð �b; fÞ þ�ði; fÞ; (6)

where

�ði; mÞ ¼ Lði; �iÞ � g�1ð�i; mÞ
�ði; mÞ ¼ �Lði; �iÞ ��ð�i; mÞ: (7)

Thus the two fundamental functions of this formalism �,
� are closely connected as they arise from applying
the same operator to the two factors of G. Defining
Y0ði; jÞ ¼ ½�tði; jÞ þ 1

2 Jði; �kÞ�ði; jÞ�1, and Y1ði; jÞ ¼
tði; jÞ½�ðiÞ þ �ðjÞ� � 1

2�ði; jÞJði; �kÞ½�ðiÞ þ �ð �kÞ�, also de-

note the Fermi gas Green’s function

g�1
0 ði; fÞ ¼ f�ð@�i ��Þ1�V ig�ði; fÞ � Y0ði; fÞ: (8)

Collecting everything, the exact EOM can now be written
neatly as

fg�1
0 ði; �jÞ � �Y1ði; �jÞ � ��ði; �jÞg � gð�j; �fÞ ��ð�f; fÞ
¼ �ði; fÞ½1� ��ðiÞ� þ ��ði; fÞ: (9)

We have introduced the parameter � above, with 0���1,
in order to provide an adiabatic path between the Fermi gas
at � ¼ 0 and the ECFL at � ¼ 1, and also an iterative
scheme in powers of � connecting the two endpoints.

We now choose the hitherto undetermined function� as

�ði; fÞ ¼ �ði; fÞ½1� ��ðiÞ� þ ��ði; fÞ; (10)

so that Eq. (9) reduces to a canonical FL type equation:

fg�1
0 ði; �jÞ��Y1ði; �jÞ���ði; �jÞg �gð�j;fÞ¼�ði;fÞ: (11)

Notice that the right-hand side has a pure � function as in a
canonical Fermi liquid type theory. To summarize, the
EOM Eq. (1) under the decomposition Eq. (3) leads to
Eq. (9). In turn this splits exactly into two coupled sets of
equations Eq. (7), (10), and (11) for the two factors g and
�. Note that the entire procedure is exact, we write explicit
forms of these equations below and then introduce approxi-
mate methods to solve them.
Inverting we find Dyson’s equation for the auxiliary FL

Green’s function:

g�1ði; mÞ ¼ fg�1
0 ði; mÞ � �Y1ði; mÞ � ��ði; mÞg: (12)

Taking functional derivatives of Eq. (10) and (12) with
respect to V , and comparing with Eq. (4) and (7) we
generate two parallel hierarchies of equations for g and
� that form the core of this formalism. The hierarchy for g
is essentially autonomous and drives that for �. Starting
with the Fermi gas at Oð�0Þ, an iterative process similar to
the skeleton graph expansion of LW [4] can be built up,
such that terms of Oð�nÞ arise from differentiating lower
order terms of Oð�n�1Þ. Systematic approximations may
thus be arranged to include all terms of Oð�nÞ for various
n [8]. The number of particles is given by 1

2nðiÞ ¼
gði; �iÞ�ð�i; iÞ, and with

U �1�2
�3�4

ða; b; cÞ � ���1�2
ða; bÞ

�V �3�4
c

; (13)

the equations to solve simultaneously are Eq. (7), (12), and
(10). The density and spin density response functions
(I-F1), (I-F7) can be found from differentiating G, i.e.,
��1�2

�3�4
ðp; q; rÞ ¼ �

�V
�3�4
c

fG�1�2
ðp; qÞg.

Zero source limit in Fourier space.—When we turn off
the sourceV , the various matrix function G, g, � become
spin diagonal and translation invariant so we can Fourier
transform these conveniently. We note the basic result
expressing G as a simple product of two functions in k
space:

GðkÞ ¼ gðkÞ�ðkÞ; �ðkÞ ¼ 1� �
n

2
þ ��ðkÞ;

g�1ðkÞ ¼ i!k þ�� "kð1� �nÞ � ��ðkÞ; (14)

where "k is the Fourier transform of the hopping matrix
�tði; jÞ, and an uninteresting constant term is absorbed in
� here and below.
Here, g plays the role of an underlying auxiliary FL with

a self energy�, and� acts as an extra spectral weight that
vanishes at high frequency, leaving the exact weight 1� n

2

valid for a projected electron (as in paper I) for � ¼ 1.
Denoting

P
k ! 1

Ns�

P
i!k; ~k

with Ns sites, the particle num-

ber sum rule is
P

k�ðkÞgðkÞ ¼ n
2 , i.e.,
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n

2
¼ X

k

gðkÞ þ �
X
k

�
�ðkÞ � n

2

�
gðkÞ: (15)

In this formalism, at k� kF, x ¼ 0 that is relevant to the

LW sum rule, the RegðkÞ dominates ReGð ~k; 0Þ (since

Re�ð ~k; 0Þ is smooth through the FS). Requiring consis-
tency with the LW theorem forces us to pin any sign change

of Regð ~k; 0Þ to the free case, whereby we impose a second
level sum rule

X
k

�ðkÞgðkÞ ¼ n2

4
; and

X
k

gðkÞ ¼ n

2
: (16)

This can be viewed as a splitting of the usual number sum

rule Eq. (15) [9]. With Eðp1; p2Þ ¼ ½"p1
þ "p2

þ 1
2 Ĵð0Þ þ

1
2 Ĵðp1 � p2Þ� we find

�ðkÞ ¼ X
p

Eðk; pÞgðpÞ�ðaÞðp; kÞ;

�ðkÞ ¼ X
p

Eðk; pÞgðpÞUðaÞðp; kÞ;
(17)

and the spin labels are from paper I with the usual signifi-

cance �ðaÞ ¼ �ð2Þ ��ð3Þ ¼ 1
2�

ðsÞ � 3
2 �

ðtÞ.
Next we introduce the spectral representation of various

functions Q that vanish at infinity: Qði!QÞ ¼R1
�1 dx

	QðxÞ
i!Q�x and 	QðxÞ ¼ � 1


 ImQðxþ i0þÞ, with xþ �
xþ i0þ. The Matsubara frequency !Q is fermionic

(bosonic) if Q is fermionic (bosonic). Proceeding further,
at any order in �, the two hierarchies give us coupled
equations for the spectral densities of the physical particles

	Gð ~k; xÞ as well as the underlying Fermi liquid 	gð ~k; xÞ, in
terms of the two objects 	 ��ð ~k; xÞ and 	�ð ~k; xÞ and their
Hilbert transforms. The Lehmann representation implies

that 	Gð ~k; xÞ is positive at all ~k, x. In making approxima-

tions, this important and challenging constraint must be
kept in mind.

Solution of g�1 and� to orderOð�Þ2.—We next discuss
a systematic expansion in powers of � [8], obtained by
taking functional derivatives of Eq. (10) and (12) to gen-
erate expressions for the vertices given the Green’s func-
tions via��� �

�V
g�1 andU� �

�V
�. To lowest order in

�, the bare vertex �ðaÞ ¼ �1, this term is absorbed in a
renormalization of the band dispersion to �"k in Eq. (14)

[10], and the remaining term denoted by ��ðkÞ. To this

order UðaÞ ¼ 0. Proceeding to the next non trivial order
in �, by taking the functional derivative of Eq. (10) and
(12) we find after a brief calculation:

�ðkÞ ¼ �2�
X
p;q

Eðk; pÞgðpÞgðqÞgðqþ p� kÞ;

��ðkÞ ¼ �2�
X
p;q

Eðk; pÞ½Eðp; kÞ þ Eðqþ p� k; pÞ�

� gðpÞgðqÞgðqþ p� kÞ:

(18)

From Eq. (14) we note that these expressions Eq. (18) lead
to a calculation of g�1 and � correct up to Oð�2Þ.
Frequency dependent corrections arise only to second or-
der in �, which is analogous to the structure of the canoni-
cal many body theory within the skeleton graph expansion.
We may now set � ¼ 1 and study the resulting theory as
the first step in exploring this formalism.
Denote fðxÞ ¼ 1

ðexp�xÞþ1 as the Fermi distribution func-

tions and �fðxÞ ¼ 1� fðxÞ, and denote the usual Fermi
factors from second order theory

W ¼ffðuÞfðwÞ �fðvÞþfðvÞ �fðuÞ �fðwÞg�ðuþw�v�xÞ;
a function of the frequencies u, v, w, x, and

Y ¼
Z
u;v;w

W	gð ~q; wÞ	gð ~p; uÞ	gð ~qþ ~p� ~k; vÞ; (19)

a function of ~k, ~p, ~q, and x. We may then write the spectral
functions corresponding to Eq. (18)

	 ��ð ~k; xÞ ¼ 2
X
~p; ~q

Eð ~k; ~pÞ½Eð ~p; ~kÞ þ Eð ~qþ ~p� ~k; ~pÞ�Y;

	�ð ~k; xÞ ¼ 2
X
~p; ~q

Eð ~k; ~pÞY: (20)

The functions appearing in Eq. (20) are familiar from
Fermi liquids [4,5], and encode the usual phase space
constraints of that theory. This leads to the low tempera-
tures behavior �maxfx2; ð
kBTÞ2g, for both objects

Im�ðk; x; TÞ and Im ��ðk; x; TÞ. The real parts of these
objects are smooth through the Fermi surface, as one
expects from the real part of the self energy in a FL, and
hence motivates the second level sum rule Eq. (16).
From Eq. (14) we write the exact expression for the

physical spectral function 	G:

	Gð ~k; xÞ ¼ 	gð ~k; xÞ
��
1� n

2

�
þ �k � x

�ð ~k; xÞ þ �ð ~k; xÞ
�
; (21)

where �k ¼ "̂k ��, and the important energy scale

�ð ~k; xÞ and the term � is defined as

�ð ~k; xÞ ¼ �	 ��ð ~k; xÞ
	�ð ~k; xÞ

; (22)

�ð ~k; xÞ ¼ Re�ð ~k; xþÞ þ 1

�ð ~k; xÞRe�ð ~k; xþÞ: (23)

The sign of the energy scale � in Eq. (22) is expected to be
positive from Eq. (20). The dimensionless term � aug-
ments the spectral weight at the Fermi level. The equations
necessary to solve the theory to Oð�2Þmay be summarized
as Eq. (14), (16), and (18) and Ref. [10] giving rise to the
spectral function Eq. (21). These require further numerical
work that is underway, it leads to spectral functions in 2
and 3 dimensions that will be published separately.
However it also provides a very interesting insight about
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the theory in high dimensions that is pursued analytically
next.

Solution in high dimensions.—In sufficiently high di-
mensions, we show next that the dimensionless term �
vanishes identically leading to a great simplification. For
sufficiently high dimensions we can ignore the momentum

dependence of Y in Eq. (19) and assume 	�ð ~k; xÞ �
C��ðxÞ, and 	 ��ð ~k; xÞ � C��ðxÞ, as functions of fre-
quency only. Here �ðxÞ extends over energy range
!c �Oð2WÞ, and C� has dimensions of inverse energy
and is positive due to 	 ��. Its Hilbert transform is called

hðxÞ � P
R
dy �ðyÞ

x�y . We use an analytically tractable Fermi

liquid model [11] with � ¼ 
kBT, where we set

�ðxÞ ¼ fx2 þ �2ge�C�fx2þ�2g=!c : (24)

The peak value of C��ðxÞ is of Oð1Þ and independent of
C� [12]. The other constant C� is dimensionless and
negative. To complete the model, we note that the real

parts are given in terms of hðxÞ as Re ��ðxþÞ ¼ C�hðxÞ and
Re�ðxþÞ ¼ C�hðxÞ. With this choice the auxiliary
spectral weight �ðk; xÞ vanishes identically in Eq. (23).
With �ðxÞ � 
C��ðxÞ and �ð�; xÞ � ½x� �� C�hðxÞ�
we may write 	gð�; xÞ ¼ 1



�ðxÞ

�2ðxÞþ�2ð�;xÞ and Regð�; xÞ ¼
�ð�;xÞ

�2ðxÞþ�2ð�;xÞ . Denoting hQð�Þi� ¼ R
d�NBð�ÞQð�Þ, where

NBð�Þ is the band density of states per spin, the chemical
potential is fixed using n

2 ¼
R1
�1 dxfðxÞh	gð�; xÞi�.

The energy parameter �ð ~k; xÞ in Eq. (22) is a constant.
We scale out a factor to define

�o ¼ n2

4
�ð ~k; xÞ ¼ �n2

4

C�

C�

: (25)

The physically observable electronic spectral function
reads

	Gð�; xÞ ¼ �ðxÞ



ðf1� n
2g þ ðn24 Þf��x

�0
gÞþ

�2ðxÞ þ �2ð�; xÞ : (26)

Here, the condition ðfÞþ � maxð0; fÞ, is inserted in the
ECFL factor to guarantee the positivity of the spectral
function for x 	 � [13]. We can determine �0 directly
from the second level sum rule Eq. (16):

�0 ¼
Z 1

�1
dxfðxÞh	gð�; xÞf�� xgi�: (27)

Thus ð2=nÞ�0 is the average inelasticity jjð�� xÞjj of the
FL Green’s function over the entire occupied band. It
vanishes if 	g were a pure delta function, as in a Fermi

gas, but is non zero in a Fermi liquid. The linear energy
term in Eq. (26) thus fundamentally arises to provide the
extra density to 	G, compensating the spectral depletion

due to the first factor 1� n
2 [originating in the non canoni-

cal nature of the projected electrons (paper I)].

In the numerical solution of the model, we can vary the
shapes of the spectra from sharp to broad by controlling the
energy scale �0 via the parameters C� and !0 in the FL
function �ðxÞ. For illustration we neglect the distinction
between the band energy and the renormalized �"k, choose a
flat band density of states per spin 	0ð"Þ ¼ 1

2W�ðW2 � "2Þ
hence the band width is 2W. Choose C� ¼ 1 W ¼ 104 K
[14], this gives �0 � 600 K in the cases studied. The
spectral shapes from Eq. (26) have a characteristic left
skew that is visible in Fig. 1, and also in many experimen-
tal spectra in high Tc systems. The marginal Fermi liquid
hypothesis [15] assumes a linear correction to the spectral
function, but is symmetric about the Fermi energy, i.e., of
the form j�� xj instead of the term in Eq. (26).
From Eq. (27) a fascinating duality emerges between the

FL and the ECFL [16]. When the FL is overall sharp such
that �0 is small, the ECFL is significantly broadened. This
happens since in the ECFL factor in Eq. (26), the coeffi-
cient of �� x becomes large and dominates the 1� n

2

contribution. The function �ðkÞ in Eq. (22) could vanish
at points in k space in the full theory (without the assump-
tion of k independence). At those points the ECFL spectra
would lose all coherence by this duality. A loss of coher-
ence would inevitably suggest a (false) pseudogap, if our
current viewpoint were unavailable. The linear term also
leads to a sloping term in the local density of states of the
ECFL that the STM technique would probe, although its
magnitude and sign are less reliably computed—depend-
ing as they do on the high energy scales W and !0. In
conclusion, we have presented essential ideas underlying
the theory of extremely correlated Fermi liquids. We have
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FIG. 1 (color online). The density n ¼ :85 and !0 ¼ 0:25.
From left to right 	GðxÞ for energies (in units of W) � ¼
�0:3, �0:2, �0:1, 0.,0.05 for both the FL (dashed) and the
ECFL(solid) theories. Inset in (A): provides an enlarged view of
the � ¼ �0:1 plots after inversion, and displays the left-skew
asymmetry of the ECFL spectrum relative to the FL. Inset in (B)
shows the DC resistivity 	ðTÞ within a bubble approximation as
a function of T for the FL (blue) and the ECFL (red). Because of
spectral redistribution, the ECFL reaches linear T behavior at a
lower T than the FL.
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shown that an explicit low order solution is very promising
in the context of explaining the photoemission spectra of
the cuprate materials.

Detailed numerics and comparison with experiments are
currently underway.

This work was supported by DOE under Grant
No. FG02-06ER46319.
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