
Equilibration of Luttinger Liquid and Conductance of QuantumWires

K.A. Matveev1 and A.V. Andreev2

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 3 December 2010; published 28 July 2011)

Luttinger liquid theory describes one-dimensional electron systems in terms of noninteracting bosonic

excitations. In this approximation thermal excitations are decoupled from the current flowing through a

quantum wire, and the conductance is quantized. We show that relaxation processes not captured by the

Luttinger liquid theory lead to equilibration of the excitations with the current and give rise to a

temperature-dependent correction to the conductance. In long wires, the magnitude of the correction is

expressed in terms of the velocities of bosonic excitations. In shorter wires it is controlled by the

relaxation rate.
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The conductance of quantum wires measured at low
temperatures is quantized in units of 2e2=h [1]. This uni-
versality is commonly interpreted in the framework of the
Luttinger liquid theory [2,3], according to which the con-
ductance is not affected by either the electron-electron
interactions in the wire or the temperature [4]. On the other
hand, recent experiments show temperature-dependent
corrections to the conductance [5–9], in apparent contra-
diction with the theory [4]. While the origin of the correc-
tions remains the subject of debate [10], much of the recent
theoretical interest focused on the physics of one-
dimensional fermions not captured by the Luttinger liquid
theory [11–15].

The concept of the Luttinger liquid applies to generic
low-energy properties of systems of interacting one-
dimensional fermions. The key feature of this theory is
that the elementary excitations can be viewed as noninter-
acting bosons with an acoustic spectrum:

H ¼ X
q

@vjqjbyqbq þ �@

2L0

½vNðN � N0Þ2 þ vJJ
2�; (1)

Ref. [2]. Here bq is the operator destroying a boson with

momentum @q, the velocities v, vN , and vJ may depend on
the electron-electron interactions, L0 is the system size
(periodic boundary conditions are assumed). In addition
to the boson occupation numbers Nq, the state of the

system is described by two integers, N and J. The latter
can be related to the total numbers of the right- and left-
moving electrons in the system, J ¼ NR � NL and N ¼
NR þ NL; N0 is the total number of electrons in some
reference state.

It is important to note that within the Luttinger liquid
approximation the numbers NR and NL of the right- and
left movers are conserved; i.e., electron-electron interac-
tions do not cause backscattering of electrons. As a result,
if the interacting quantum wire coupled to noninteracting
leads is described by the Luttinger liquid model [4], the

electrons entering the wire from the leads always pass
through it, and the interactions do not affect the conduc-
tance. On the other hand, if the interactions are treated as a
small perturbation to the noninteracting fermion picture,
they do lead to backscattering of electrons and reduce the
conductance [13–15]. The backscattering occurs via three-
electron scattering processes, which are not included in the
Luttinger liquid theory.
The corrections to the quantized conductance [5–9] are

observed in the regime of low electron density, where the
electron-electron interactions are strong. Thus the theory
[14,15] based on the picture of weakly interacting electrons
cannot be applied to the experiments directly, and the
generalization to the case of arbitrary interaction strength
is needed. In this Letter we develop such a theory using the
Luttinger liquid picture as a starting point and accounting
for the electron backscattering processes.
We start by noting that the Luttinger liquid Hamiltonian

(1) describes the stable low-energy fixed point of a
one-dimensional system of interacting fermions. The full
low-energy Hamiltonian consists of (1) and a number of
perturbations describing interactions between the excita-
tions. Although formally irrelevant, these terms are respon-
sible for establishing the thermal equilibrium in the system.
The equilibrium distribution of the bosonic excitations is
dictated by conservation laws and independent of the de-
tailed form of the irrelevant perturbations,

Nq ¼ 1

e@ðvjqj�uqÞ=T � 1
: (2)

Because of the conservation of energy and momentum, the
distribution function is characterized by two parameters,
temperature T and velocity u. Relaxation towards the
equilibrium distribution (2) is due to the irrelevant pertur-
bations which have the form of higher-order terms in
bosonic variables, and the respective relaxation time is
expected to scale as a power of temperature, �0 / T��.
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The boson distribution (2) can be derived from the
general principle that for systems where energy and mo-
mentum are conserved the probability of realization of a
given microscopic state i depends on its energy Ei and

momentum Pi as e�ðEi�uPiÞ=T . The momentum of a
Luttinger liquid is given by [2]

P ¼ pFJ þ
X
q

@qbyqbq; (3)

where pF ¼ �@N=L0 and the first term represents the
momentum of a filled Fermi surface with J ¼ NR � NL

extra electrons at the right Fermi point. The presence of J
in the momentum (3) means that its distribution

e�ð�J2�upFJÞ=T and the boson occupation numbers (2) are
controlled by the same parameter u. (Here � ¼
�@vJ=2L0.) In particular, the thermodynamic average of
J is given by J ¼ Nu=vJ. Taking into account the relation
[2] between J and the electric current, I ¼ evJðJ=L0Þ, we
conclude that at full equilibrium the velocity u of the boson
gas coincides with the drift velocity vd ¼ I=en, where n ¼
N=L0 is the electron density. The conclusion u ¼ vd is
obvious in the presence of Galilean invariance, in which
case the boson gas should be at rest in a frame moving with
the drift velocity.

Establishment of full thermodynamic equilibrium re-
quires the presence of backscattering processes which
change the numbers of the right- and left-moving electrons
NR and NL and transfer the corresponding momentum to
the boson excitations. Such processes are not accounted for
in the Luttinger liquid theory and, as we discuss below,
occur at a time scale � much longer than the time �0
required for the formation of the boson distribution (2).
Therefore, at time scales t � �0 equilibration processes
may be described by relaxation of the velocity u of the
boson gas towards vd,

_u ¼ �u� vd

�
: (4)

Because of the time dependence of u, the total momentum
of the bosons Pb changes as well. The rate of this change
is easily obtained from Eqs. (2) and (3), _Pb ¼
ð�L0T

2=3@v3Þ _u. Conservation of the total momentum (3)
of the Luttinger liquid implies that the number of right-
moving electrons changes at the rate _NR ¼ _J=2 ¼
� _Pb=2pF, resulting in

_n R ¼ �

6@

T2

v3pF

u� vd

�
: (5)

Here nR is the density of the right-moving electrons in the
system.

The expressions (4) and (5) describe equilibration of a
system of one-dimensional electrons at any interaction
strength. Microscopic theory of the phenomenological pa-
rameter � can be developed in two limiting cases. In the
limit of weakly interacting electrons the backscattering

processes involve a hole diffusing through the bottom of
the band due the three-particle collisions [13,15]. Because
of small occupation probabilities of the hole states, the

backscattering rate follows the Arrhenius law, ��1 /
e�D=T , with D given by the Fermi energy. In the limit of
strong interactions, the electrons form a Wigner crystal
structure. The excitations are phonons in this crystal, which
at low energies are equivalent to the bosons in the Luttinger
liquid. The total (quasi-) momentum of the phonons can
change via umklapp processes, whose rate also follows the
Arrhenius law, withD given by the Debye frequency of the
Wigner crystal [16].
The above examples demonstrate that the backscattering

processes involve states at energies of the order of the
bandwidth. Such processes are neglected in the renormal-
ization group schemes describing the low-energy proper-
ties of Luttinger liquids. Although at arbitrary interaction
strengths these processes have not been studied micro-
scopically, we expect the scattering rate to follow the
Arrhenius law with the activation energy of the order of
the bandwidth, D� vpF. As a result, at low temperatures
we have � � �0.
In this Letter we study the conductance of a long uni-

form quantum wire adiabatically connected to ideal metal
leads, starting with the case of spinless electrons. We
assume that the length of the wire L satisfies the condition
L � v�0, but can be comparable with v�. The electrons in
the leads are assumed to be noninteracting, and their dis-
tributions are given by the standard Fermi functions with
slightly different chemical potentials,�l ��r ¼ eV � T.
Inside the wire electron-electron interactions are signifi-
cant, Luttinger liquid is formed, and the state of the system
is described by the occupation numbers of the bosonic
excitations.
It is convenient to divide the wire into small segments of

length �L chosen such that v�0 � �L � L� v�.
Because �L � v�, the backscattering of electrons in
each segment is negligible, the numbers of the right- and
left movers �NR;L are conserved, and the Luttinger liquid
is described by the Hamiltonian (1). Since �L � v�0, the
bosonic excitations are in equilibrium with each other, with
the distribution given by Eq. (2). The absence of global
equilibrium in the wire subjected to a small voltage bias V
is reflected in the fact that the distribution (2) has a non-
vanishing boost velocity u / V. Thus the state of the
Luttinger liquid in each segment of the wire is described
by the temperature T and velocity u of the bosonic excita-
tions and by the densities nR;L ¼ �NR;L=�L of the right-
and left-moving electrons. Although each small segment is
in equilibrium, the electron backscattering may give rise to
different equilibrium states for segments at distances of
order v� from each other. Thus all four parameters T, u, nR,
and nL may depend on the position in the wire.
Equilibration of the electron system results in the finite

backscattering rate (5). In the dc regime the total number
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NR of the right movers in the wire does not depend on time,
which means that the currents jRl and jRr of the right-

moving electrons at the left and right ends of the wire
are different, jRr ¼ jRl þ _NR. Using the expression I ¼
eðjRr þ jLr Þ for the electric current at the right end of the
wire, we rewrite the above condition as I ¼ eðjRl þ jLr Þ þ
e _NR. The currents jRl and jLr enter the wire from the leads

and are easily computed using the respective Fermi distri-
butions of noninteracting electrons. This yields

I ¼ G0V þ e _NR; (6)

where G0 ¼ e2=h is the standard Landauer conductance of
a noninteracting wire.

We now use conservation of momentum and energy to
find _NR in Eq. (6) in the linear response regime I ! 0.
Conservation of the momentum (3) implies that backscat-
tering of a single right mover, �NR ¼ �1, is accompanied
by the transfer of momentum 2pF to the bosons. On the
other hand, according to Eq. (1) at J ! 0 the total energy E
of the bosons should remain unchanged. Thus, the mo-
menta transferred to the right- and left-moving bosons
must be equal, i.e., �PR;L ¼ pF and �ER;L ¼ �vpF. We
therefore conclude that backscattering of right-moving
electrons changes the energy of the right-moving bosons
at a rate

_E R ¼ �vpF
_NR: (7)

In the absence of backscattering all the bosons in the
system are in thermal equilibrium with the leads, whose
temperatures are assumed to be equal. Thus the energy
current in the wire vanishes. Backscattering transfers en-
ergy from the left- to the right-moving bosons at the rate
(7), resulting in the net energy current

jE ¼ _ER: (8)

Equations (6)–(8) express conservation laws for particle
number, momentum, and energy. To make further progress
we need to evaluate the energy current jE.

In the linear response regime J ! 0 and only the bosons
contribute to the energy current in the Luttinger liquid. The
latter are distributed according to Eq. (2). At nonvanishing
velocity u their energy current is

jE ¼ �

3

T2

@v
u: (9)

The parameters u and T of the boson distribution (2) may
depend on position x along the wire. In the linear regime,
I ! 0, one expects u / I and dT=dx / I. Then from con-
servation of energy, djE=dx ¼ 0, and Eq. (9) we conclude
that u is position independent.

Combining Eqs. (7)–(9) we find the following relation
between the backscattering rate _NR and velocity u,

_N R ¼ ��

3

T2

@v2pF

u: (10)

This equation expresses the energy and momentum con-
servation laws in a wire connected to ideal leads and must
be satisfied regardless of the equilibration rate �. On the
other hand, if the equilibration rate is known, the backscat-
tering rate _NR can also be related to the boson gas velocity
u via Eq. (5). Comparing (5) and (10) we conclude that in a
wire of length L the boson gas velocity u is related to the
drift velocity vd ¼ I=en as

u ¼ L

leq þ L
vd; leq ¼ 2v�: (11)

Substituting Eqs. (10) and (11) into (6), we find the
conductance of the wire

G ¼ G0

�
1� �2

3

T2

v2p2
F

L

leq þ L

�
: (12)

The second term in Eq. (12) represents a correction to the
Luttinger liquid result [4] originating from equilibration of
bosonic excitations. The result (12) is valid for any strength
of electron-electron interactions. At weak interactions v
coincides with the Fermi velocity vF ¼ pF=m, and
Eq. (12) agrees with the results of Refs. [14,15]. In short
wires, L � leq, the correction to the quantized conduc-

tance is proportional to the equilibration rate ��1 / e�D=T

and the length of the wire, �G / Le�D=T . At L � leq,

the correction saturates at �G� ðe2=hÞðT=vpFÞ2, but re-
mains small within the range of applicability of our theory,
T � vpF.
Our result (12) applies to systems where electron spins

are polarized by an external magnetic field. On the other
hand, the temperature-dependent corrections to conduc-
tance [5–9] are observed in unpolarized wires, and spins
are believed to play a significant role in this phenomenon.
We now generalize our discussion to the case of electrons
with spin. Compared to Eq. (1), the Hamiltonian of the
Luttinger liquid with spins [3] has twice the number of
modes. Most importantly, there are two branches of bo-
sonic excitations, corresponding to waves of charge and
spin densities and propagating at different velocities, v�

and v�, respectively. In addition, instead of the numbers of
right- and left-moving electrons NR;L ¼ ðN � JÞ=2, the
state of each system is described by the numbers of such

electrons for each spin direction, NR;L
" and NR;L

# .

The discussion leading to Eq. (12) can then be readily
modified as follows. The conductanceG0 of noninteracting
wire in Eq. (6) is now 2e2=h. The number of right movers
NR in Eqs. (5)–(7) and (10), should be understood as NR

" þ
NR

# , whereas E
R in Eqs. (7) and (8) is the total energy of

right-moving bosons, in both charge and spin sectors. In
the right-hand sides of Eq. (5) and (9) one has to replace
v�n ! v�n

� þ v�n
� . The most significant change appears in

Eq. (7). When an electron is backscattered and momentum
pF ¼ �@n=2 is transferred to right-moving bosons, it is
distributed unevenly between the charge and spin
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branches. Because of the relatively fast equilibration of
bosons their distribution functions have the form (2) with
different velocities v� and v� in the two sectors but the

same u. Momentum change is accommodated by a small
change of u. As a result, the fraction of the momentum pF

transferred into charge or spin branch is proportional to
v�3
�;�, whereas the corresponding energies scale as v

�2
�;�. We

thus generalize Eq. (7) as

_E R ¼ �v�2
� þ v�2

�

v�3
� þ v�3

�

pF
_NR: (13)

As a result we recover the general form (12) of the depen-
dence of conductance on the length of the wire with

v2 ¼ 2ðv�2
� þ v�2

� Þ
ðv�1

� þ v�1
� Þðv�3

� þ v�3
� Þ ;

leq ¼ 2�
v�1
� þ v�1

�

v�2
� þ v�2

�

;

and G0 ¼ 2e2=h. The presence of both v� and v� in the

expression for the correction to the quantized conductance
2e2=h reflects the fact that the momentum of backscattered
electrons is distributed among the bosonic excitations in
both the charge and spin sectors.

The experimentally observed corrections to the quan-
tized conductance [5–9] are most prominent at low elec-
tron densities. In this regime the Coulomb interactions
between electrons are effectively very strong, resulting in
v� � v�. The conductance then takes the form

G ¼ 2e2

h

�
1� �2

6

�
T

v�pF

�
2 L

leq þ L

�
; (14)

with leq ¼ 2v��. Importantly, at v� � v� the magnitude

of the correction to the quantized conductance is controlled
by the spin velocity.

Similarly to the case of spinless electrons, for long
wires, L � leq, the correction shows quadratic temperature

dependence, �G� ðe2=hÞðT=v�pFÞ2. Within the range of
applicability of our theory, T � v�pF, the correction re-
mains small. In short wires, L � leq, the temperature

dependence of �G is controlled by that of the relaxation
time, �G / ��1. We are not aware of microscopic calcu-
lations of the relaxation time � for strongly interacting
electrons with spin. However, based on the analogy with
the case of spinless electrons [16], we expect activated

temperature dependence ��1 / e�D�=T , with the activation
energy of the order of the bandwidth of the spin excita-
tions, D� � v�pF � v�pF.

In a wire of fixed length the crossover between the
regimes of long and short wires can be explored by

changing the temperature T. Because of the exponential
temperature dependence of �, the condition L� 2v�� is
satisfied at T �D�= lnN, where N is the number of elec-
trons in the one-dimensional part of the device. At T �
D�= lnN the activated behavior �G / e�D�=T should be
observed, in agreement with the experiment [6]. The qua-
dratic temperature dependence is expected in the relatively
narrow range D�= lnN � T � D�, and its experimental
observation requires working with rather long wires. At the
upper limit of this range �G� e2=h. At this point the
system crosses over into the so-called spin-incoherent
regime. Study of this crossover would be very interesting
from both the theoretical point of view and because of its
possible relevance for the experiments [5–9] showing a
shoulderlike feature in the conductance at 0:7� 2e2=h.
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