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Identifying causal links (couplings) is a fundamental problem that facilitates the understanding of

emerging structures in complex networks. We propose and analyze inner composition alignment—a

novel, permutation-based asymmetric association measure to detect regulatory links from very short time

series, currently applied to gene expression. The measure can be used to infer the direction of couplings,

detect indirect (superfluous) links, and account for autoregulation. Applications to the gene regulatory

network of E. coli are presented.
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Many systems can be regarded as complex networks of
multiple interacting subsystems [1], e.g., social and eco-
nomic networks [2], the climate system [3], the brain [4],
or gene regulatory networks [5]. Hence, the data-driven
reconstruction of these networks is a pressing research
problem with valuable applications, where the analysis of
multivariate time-resolved data is crucial to infer (causal)
relationships. While the current technological advances
facilitate the collection of an unprecedented amount of
time series data, for several typical systems, particularly
in biology, the time series are rather short (� 10 time
points). Thus, standard association measures, e.g.,
information-theoretic, correlation, or model-based ones
[6,7] may not resolve the couplings, while measures
operating on symbolic dynamics appear less sensitive to
the length of the time series [7,8]. Moreover, only a
few measures address the important problem of direction-
ality of couplings (e.g., Granger causality or transfer
entropy [6]).

In this contribution, we develop a permutation-based
measure, inner composition alignment (IOTA), denoted
by �, having the following merits: (i) It identifies (unidir-
ectional and bidirectional) coupling and its directionality,
(ii) it distinguishes direct from indirect coupling (simi-
larly to partial correlation), (iii) it infers autoregulation
(resulting from an internal adaptive mechanism by which
a subsystem regulates itself [9]), a problem which, to the
best of our knowledge, has not been addressed by any of
the available association measures, (iv) it is applicable to
very short time series, and (v) it does not depend explic-
itly on time.

Next, we define IOTA and analyze its properties. Given

the time series yðlÞ and yðkÞ of the subsystems l and k over the

same time domains, let�ðlÞ be the permutationwhich orders

yðlÞ in a nondecreasing order, i.e., �ðlÞ: 8 i ½yðlÞð�ðlÞÞ�i �
½yðlÞð�ðlÞÞ�iþ1. The series g

ðk;lÞ ¼ yðkÞð�ðlÞÞ is the reordering
of the time series yðkÞ with respect to �ðlÞ. The crucial point

of our approach is that, in particular, for gene expression,
the reordered time series of 2 interacting subsystems have
been observed to be monotonically increasing functions
[10]. To quantify the monotonicity, we count the number
of intersection (crossing) points of the reordered time series
with the horizontal lines which are drawn from each of the
time points (Fig. 1). Thus, we can compute � by

�ðl!kÞ¼1�
P

n�2
i¼1

P
n�1
j¼iþ1wij�½ðgðk;lÞjþ1�gðk;lÞi Þðgðk;lÞi �gðk;lÞj Þ�

�
;

(1)

where n is the length of the time series, � ¼ ðn�1Þðn�2Þ
2 is a

normalization constant which corresponds to the maximum
number of crossings, wij denotes a weight, and �½x� is the
Heaviside step function,

�½x� ¼
�
1; x > 0
0; x � 0:

For two coupled subsystems, the number of crossing points
tends to zero, rendering a value for � close to 1. In order to
account for noise-induced fluctuations, we compare the
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FIG. 1. Time series yð1Þ and yð2Þ reordered by the permutation
�ð1Þ. Horizontal lines are drawn at points of yð2Þ (�ð1Þ). The plot
in the inset shows the time series in their original order.
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properties of � using different weights (summarized in
Table I). If the values of the time series are rescaled to the
interval ½0; 1�, � fulfills the properties of a normalized
association measure, independent of the chosen weight.

Generally, IOTA is asymmetric, i.e., yðlÞð�ðkÞÞ � yðkÞð�ðlÞÞ,
which renders the inference of unidirectional links from
short time series possible. As IOTA is permutation based, it
is also capable of detecting nonlinear interactions, similarly
to mutual information. Note that if the same permutation is
applied to all time series, the value of � does not change.

Additionally, IOTA can be used to address the problem
of indirect (superfluous) couplings (links), and possible
autoregulation. To identify indirect links, two permutations
are applied consecutively. Given the subsystem m regulat-
ing the subsystems k and l directly, the pairwise measure
predicts an additional link from k to l. To check whether

the link is indirect, we determine the permutations �ðkÞ and
�ðmÞ and evaluate whether applying the permutation com-

position �ðkÞð�ðmÞÞ on yðlÞ instead of the permutation �ðkÞ
alone changes the value of the measure. Hence, the partial
version of IOTA [Eq. (2)] is formulated by comparing the
triplets deduced from the pairwise measure:

�ððk!lÞjðm!kÞ;ðm!lÞÞ
p ¼ j�ðhðl;k;mÞÞ � �ðgðl;mÞÞj; (2)

with gðl;kÞ ¼ yðlÞð�ðkÞÞ and hðl;k;mÞ ¼ yðlÞð�ðkÞð�ðmÞÞÞ. Here,
the value of �p is expected to tend to zero for (k ! l) being

an indirect link. For k ¼ l ¼ m, a low value of �p is

obtained if the time series are almost monotonic, which
on the other hand indicates a low probability for
autoregulation.

Next, we briefly discuss the similarities and differences
between IOTA andKendall’s �, shown tomost reliably infer
coupling from very short time series of 10 time points (in
comparison to other similarity measures) [7]. To calculate
Kendall’s rank correlation for each time series, the permu-
tation is determined that arranges the respective series in

nondecreasing order, namely,�ð1Þ for yð1Þ and�ð2Þ for yð2Þ. If
thematching values in�ð1Þ and�ð2Þ are linked together, then
the number of intersections among these links is the number

of discordant pairs: nd ¼
P

n�1
i¼1

P
n
j¼iþ1 �½ðrð1Þj � rð1Þi Þ�

ðrð2Þi � rð2Þj Þ� ¼ nðn�1Þ
2 � nc, where rðlÞi is the rank of value

vðlÞ
i in the time series yðlÞ, associated with the permutation

�ðlÞ, and nc ¼
P

n�1
i¼1

P
n
j¼iþ1 �½ðrð1Þi � rð1Þj Þðrð2Þi � rð2Þj Þ� is

the number of concordant pairs. Finally, Kendall’s � is
given by

� ¼ 2
nc � nd
nðn� 1Þ ¼ 1� 2

nðn� 1Þ 2nd: (3)

In contrast, IOTA uses the permutation �ð1Þ, employed in
the reordering of the first time series, to reorder the second
one. Thus, � includes the ordering information from one

subsystem and its effect on the second. Applying�ð1Þ on the
ranks of yð1Þ and yð2Þ leads to the series �ð1Þ ¼ rð1Þð�ð1ÞÞ and
�ð2Þ ¼ rð2Þð�ð1ÞÞ, which are subsequently used to calculate
the value of �:

�ð1!2Þ ¼ 1� 2

ðn� 1Þðn� 2Þ c; (4)

where the number of crossings in Fig. 1 matches

c ¼ P
n�2
k¼1

P
n�1
i¼kþ1

P
n
j¼iþ1 �½ð�ð2Þ

k � �ð2Þ
j Þð�ð2Þ

i � �ð2Þ
k Þ��

½�ð1Þ
i � �ð1Þ

j þ 2�wij. It is important to note that the graph-

ical representation of Kendall’s � and � are comparable only

if yð1Þ is monotonically increasing, i.e., � ¼ r. However, in
the general case, � includes the ordering information which
is neglected in the case of Kendall’s �.
In order to evaluate the capabilities of IOTA to infer

directed networks particularly from very short gene
expression time series, we apply � to reconstruct the gene

TABLE I. Different weights wij for IOTA.

Uniform weighting 1

Arithmetic mean 1
2 ðgðk;lÞjþ1 þ gðk;lÞj Þ

Geometric mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðk;lÞjþ1g

ðk;lÞ
j

q

Harmonic mean 2ð 1

gðk;lÞ
jþ1

þ 1

gðk;lÞj

Þ�1

Maximal excursion maxðjgðk;lÞjþ1 � gðk;lÞi j; jgðk;lÞj � gðk;lÞi jÞ
Slope jgðk;lÞjþ1 � gðk;lÞj j
Squared slope ðgðk;lÞjþ1 � gðk;lÞj Þ2
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FIG. 2. ROC curves for a network of 100 genes of E. coli
(upper panels: noise-free case; lower panels: noise level of 0.1).
The left and middle panels are obtained for � (superfluous
removed) including a significance test with 10 000 realizations
for different weights—left: slope (black), squared slope (dark
gray), maximal excursion (gray); middle: uniform (black), arith-
metic mean (dark gray), geometric mean (gray), harmonic mean
(light gray). The right panels relate to the correlations: Pearson
(black), Spearman (dark gray), Kendall (gray). These results do
not incorporate a significance test.
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regulatory network of the bacterium E. coli, as described
previously in [11]. More precisely, we analyze a
subnetwork of 100 genes (representing the nodes) that
approximate significantly well the statistical properties of
the whole network [12]. The investigated subnetwork is
sparse, having 121 unidirectional links, 6 of which are
autoregulatory. The dynamics of each node (gene) is gov-
erned byMichaelis-Menten and Hill kinetics, rendering the
simulated gene expression time series very similar to real
microarray mRNA measurements. Moreover, the consid-
ered gene expression time series consist of 10 time points
each, corresponding to real experimental measurements.

Our statistical analysis is based on the following permu-
tation test: We select 10 000 permutations uniformly at
random, shuffle the data according to these permutations,
recalculate �, and estimate the empirical p values at the
significance level 0.01. Additionally, we determine the
significance of the direction (l ! k) relying on an analo-
gous permutation test, where we check whether the dis-

tance �ðl!kÞ � �ðk!lÞ of the original time series is larger
than that of the randomized ones. To test the reconstruction
efficiency of IOTA and particularly the influence of differ-
ent weights (Table I), we consider the resulting receiver
operating characteristics (ROC) curves, which illustrate
the change of the relative trade-offs between benefits
[true positive rate (TPR)—correctly inferred links] and
drawbacks [false positive rate (FPR)—incorrectly inferred

links], while continuously tuning the threshold that is used
to identify a link [13].
We investigate both deterministic and stochastic time

series. Figure 2 illustrates that the range of values of �
depends on the choice of the weight, where all mean-based
weights are less robust against the influence of noise than
the slope-based ones. IOTA has the lowest noise sensitivity
using the squared slope weight—an important feature,
especially when dealing with biological data. Hence, we
employ the squared slope weight in our further study.
By comparing the reconstruction efficiency of � to those

of the rank correlations, we observe that the lower bound-
ary of the FPR is similar in both cases, which poses a direct
control on the false positives. However, the ROC curve for
� is more continuous than those of the rank correlations.
Hence, the network topology as inferred with � is less
sensitive to the threshold chosen to decide which nodes
are to be linked. This is of particular value when dealing
with experimental data.
Next, we compare various reconstruction scenarios ob-

tained with IOTA and Kendall’s �, when different thresh-
olds (as they were previously employed to obtain the ROC
curves) are used to identify the links (Fig. 3). While in the
deterministic case the proper choice of the threshold is
evident, the situation is more complicated when stochas-
ticity is present, since it is difficult to quantify the influence
of noise. For instance, for noise intensity 0.1 and threshold
0.95, Kendall’s rank correlation gives a TPR of less than
10% (FPR � 1%), whereas a threshold of 0.5 renders a
TPR � 70% (FPR � 25%). On the other hand, when
IOTA is applied under the same conditions, the TPR at

FIG. 3. Reconstruction of a regulatory network of 100 genes of
E. coli from (a),(b) noise-free time series using threshold 1, (c),
(d) time series simulated with noise level 0.1 using threshold
0.95, and (e),(f) with noise level 0.1 using threshold 0.5.
Panels (a),(c),(e) show the networks obtained with IOTA,
whereas (b),(d),(f) are obtained with Kendall’s �. The original
network (in the lower panels the undirected version) is shown in
light gray; correctly identified links are marked in black. False
positive links are not shown.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 4. Network reconstruction with IOTA for networks of
different sizes [(a)–(i) refer to Table II] and stochastic time
series (noise intensity 0.01) of 10 time points. Black links are
obtained with threshold 0.75 (dark gray additionally with thresh-
old 0.99); light gray indicates not identified links.
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both threshold levels is � 65% [FPR � 30% (40%) for
threshold 0.95 (0.5)]. Hence, in contrast to Kendall’s �,
where the number of correctly and falsely identified links is
strongly dependent on the threshold, the values obtained
with IOTA are almost constant. Thus, IOTA results in
robust predictions with respect to varying thresholds, as
demanded in practical applications. Furthermore, in con-
trast to Kendall’s �, which assumes all genes to be autor-
egulated per definition, IOTA infers correctly all of the
included autoregulatory links, but also partially identifies
genes which are not autoregulated (1% in the noise-free
case and even 5% from the noisy time series).

In order to test the capabilities of IOTA, we modify the
original source network to include additional bidirectional
links. Subnetworks of various sizes and simulated time
series of 10 time points each are generated from the
modified network, as shown in Fig. 4 and Table II.
Applied to networks of intermediate size (100–140 nodes),
� inferred approximately 60% of the bidirectional links
present (Table II bidirectional). However, we observe
that when applied to very short time series, IOTA identifies
in most of the cases only one significant direction.
Furthermore, similarly to the previous example, nearly
all autoregulated genes are correctly identified, while
slightly reducing the FPR for several of the investigated
networks (Table II autoregulated). We also observe that the
capability of IOTA to correctly infer couplings depends on
the density of the network, performing particularly well on
sparse networks (e.g., gene regulatory networks).

In summary, we introduce IOTA, a permutation-based
measure, as an efficient tool to identify relations between
subsystems, together with the associated directionality,
currently possible only for a small number of measures
operating exclusively on long time series. We find that
IOTA is robust to noise and can be used to infer statistically
significant (nonlinear) couplings from very short time-
resolved data of gene expression. Moreover, even from
short time series, IOTA can infer autoregulation and the
direction of coupling under certain conditions (in particu-
lar, if the dynamics of the coupled systems involves small
time delays). The dependence of IOTA’s reliability on the
length of the time series and the ability of the measure to

analyze chaotic time series remains to be investigated in a
future study.
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