
Sign of Kurtosis near the QCD Critical Point

M.A. Stephanov

Department of Physics, University of Illinois, Chicago, Illinois 60607, USA
(Received 27 April 2011; published 26 July 2011)

We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is universally

negative when the critical point is approached on the crossover side of the phase separation line. As a

consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity, may become

smaller than the value given by independent Poisson statistics. We discuss implications for the beam

energy scan program at RHIC at BNL.
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Introduction.—Mapping the QCD phase diagram as a
function of temperature T and baryochemical potential �B

is one of the fundamental goals of heavy-ion collision
experiments. QCD critical point is a distinct singular fea-
ture of the phase diagram. It is a ubiquitous property of
QCD models based on the chiral symmetry breaking
dynamics (see, e.g., Ref. [1] for a review and further
references). Locating the point using first-principles lattice
calculations is a formidable challenge (see, e.g., Ref. [2]
for a recent review and references). If the critical point is
situated in the region accessible to heavy-ion collision
experiments, it can be discovered experimentally. The
search for the critical point is planned at the Relativistic
Heavy Ion Collider (RHIC) at BNL, the Super Proton
Synchrotron (SPS) at CERN, the future Facility for
Antiproton and Ion Research (FAIR) at GSI, and
Nuclotron-based Ion Collider Facility (NICA) in Dubna
(see, e.g., Ref. [3]).

The characteristic feature of a critical point is the diver-
gence of the correlation length� and of themagnitude of the
fluctuations. The simplest measures of fluctuations in
heavy-ion collisions are the variances of the event-by-event
observables such as multiplicities or mean transverse mo-
menta of particles. The singular, critical contribution to
these variances diverges as (approximately) �2, and would
manifest in a nonmonotonic dependence of such measures
as the critical point is passed by during the beam energy
scan [4,5]. In realistic heavy-ion collision the divergence of
� is cut off by the effects of critical slowing down [5,6], and
the estimates of the maximum correlation length are in
the range of at most 2–3 fm, compared to the natural
0.5–1 fm away from the critical point. However, higher,
non-Gaussian, moments of the fluctuations depend much
more sensitively on �, according to Ref. [7]. For example,
the 4thmoment grows as�7 near the critical point,making it
an attractive experimental tool. In this Letter we follow up
on the results of Ref. [7] to point out that the sign of the 4th
moment could be negative as the critical point is approached
from the crossover side of the QCD phase transition.

The sign of various moments have been discussed in the
literature in related contexts: see, e.g., discussion of the

sign of the 3rd moment in Ref. [8] or the 6th and 8th
moments in Ref. [9] and also numerical lattice calculations
in Ref. [10] where the possible sign change of kurtosis
is noted.
In this Letter we shall address specifically the sign of the

4th moment (or kurtosis) and do it in a more universal and
quantitative way than has been done previously, by using
the known parametric form of the universal equation of
state near the critical point. We emphasize universality of
the behavior of the kurtosis and draw experimental con-
sequences from these results.
Kurtosis and universal effective potential.—Let us be-

gin, as in Ref. [1], by describing fluctuations of the order
parameter field �ðxÞ near a critical point using the proba-
bility distribution

P½�� � expf��½��=Tg; (1)

where� is the effective action (free energy) functional for
the field �, which can be expanded in powers of � as well
as in the gradients (we chose � ¼ 0 at the minimum):

�¼
Z
d3x

�ðr�Þ2
2

þm2
�

2
�2þ�3

3
�3þ�4

4
�4þ���

�
: (2)

Calculating 2-point correlator h�ðxÞ�ð0Þi we find that the
correlation length � ¼ m�1

� . For the moments of the zero
momentum mode �V � R

d3x�ðxÞ in a system of volume

V, we find at tree level

�2 ¼ h�2
Vi ¼ VT�2; �3 ¼ h�3

Vi ¼ 2�3VT
2�6;

�4 ¼ h�4
Vic ¼ 6VT3½2ð�3�Þ2 � �4��8;

(3)

where h�4
Vic � h�4

Vi � 3h�2
Vi2 denotes the connected 4th

central moment (the 4th cumulant). The critical point is
characterized by � ! 1. The central observation in
Ref. [7] was that the higher moments (cumulants) �3 and
�4 diverge with � much faster than the quadratic moment
�2. Here we shall point out that the sign of the 4th moment
�4 is negative in a certain sector near the critical point.
More precisely, the 4th cumulant is negative when the
critical point is approached from the crossover side. Let
us demonstrate this in several complementary ways.
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A simple way to see why the kurtosis is negative is by
following the evolution of the probability distribution of
�V as we approach the critical point along the crossover
line. In Ising scaling coordinates: from above the critical
temperature, i.e., t � ðT � TcÞ=Tc > 0, along the line of
zero magnetic field H ¼ 0. Away from the critical point,
more precisely for �3 � V, the central limit theorem
dictates that the probability distribution of �V is
Gaussian, with a vanishingly small kurtosis. As we ap-
proach the critical point the distribution develops non-
Gaussian shape. This intermediate shape is a deformation
of the Gaussian towards a two-peak distribution, corre-
sponding to the phase coexistence on the opposite, first-
order transition side (t < 0) of the critical point. Such a
shape is clearly less ‘‘peaked’’ than the Gaussian, and thus
corresponds to negative kurtosis.

More quantitatively, the kurtosis vanishes as 1=V at
(almost) any point away from the critical point, i.e.,

K � �4=�
2
2 ¼ Oð�3=VÞ: (4)

The exception is the coexistence line (H ¼ 0, t < 0 ray).
The distribution there has two peaks of equal height and its
kurtosis is K ¼ �2þOð�3=VÞ.

It is important to note that this is only true strictly on the
coexistence line H ¼ 0, for the moments measured around
the symmetric point of the probability distribution of �V ,
which is actually a dip, not a peak, for t < 0. At any point
close to the coexistence line, i.e., at H � 0, t < 0, the
kurtosis around the dominant peak is positive.

In the scaling regime (close to but not at the critical
point) where � is much greater than the microscopic scale
a, but still much less than the linear size of the system,

a � � � V1=3, the coefficient of �3=V in Eq. (4) can be
expressed in terms of the couplings �i using Eq. (3):

K ¼ 6ð2�2
3�

3 � �4�Þ�
3

V
: (5)

These couplings, and in fact the shape of the effective
potential, are also universal. In particular, �4 scales with

� as �4 ¼ ~�4ðT�Þ�1, where the universal value of ~�4 is
known approximately to be 4.0 on the crossover line (see,
e.g., Ref. [11] for a review). (As in Ref. [7], for simplicity
and consistency with our overall level of precision, we
neglect the anomalous scaling dimension �, which is
only of order few percent.) Since on the crossover line
�3 ¼ 0 and �4 > 0, it is clear from Eq. (3) that K < 0.

Away from the crossover line (H ¼ 0, t > 0 ray) the
distribution is skewed: �3 � 0. This makes the kurtosis
positive, according to Eq. (5), except for a certain sector
around the crossover line.

Universal equation of state around the critical point.—
To extend this analysis away from the crossover line, i.e.,
to take into account �3 � 0 in Eq. (5), we need to know the
equation of state, in particular, �4 as a function of both
Ising variables: reduced temperature t and magnetic field

H. In the scaling regime near t ¼ H ¼ 0 this equation of
state is also universal. For the Ising model it is known to
order "3 in the epsilon expansion as well as numerically.
Before we discuss this universal form, let us keep in

mind that the mapping of QCD phase diagram in the T;�B

plane into t; H plane is not universal. However, this map-
ping is analytic, i.e., both functions tðT;�BÞ and HðT;�BÞ
are analytic at the critical point, which is mapped into the
origin, tðTcp; �

cp
B Þ ¼ HðTcp; �

cp
B Þ ¼ 0.

The standard parametrization, Ref. [12], of the equation
of state in the scaling domain near the critical point is in
terms of two new scaling variables R and � (it has been
applied in the context of QCD before, Ref. [13]). Denoting
the ‘‘magnetization’’ byM ¼ h�Vi=V, we defineR and � as

M ¼ R��; t ¼ Rð1� �2Þ: (6)

Then the equation of state can be expressed in terms of the
single function hð�Þ as

H ¼ R�	hð�Þ: (7)

Unlike the explicit form of the singular equation of state
M ¼ Mðt; HÞ, the function hð�Þ is analytic. It has two
zeros. One, at � ¼ 0, corresponds to the crossover line
(t > 0, H ¼ 0 ray), another, at some � ¼ �1 > 1, corre-
sponds to the coexistence (first-order transition) line (t < 0,
H ¼ 0 ray). The function hð�Þ must also be odd since
Mð�HÞ ¼ �MðHÞ. The simplest function obeying all
these requirements is a cubic polynomial

hð�Þ ¼ �ð2� 3�2Þ; (8)

where the value �1 ¼
ffiffiffiffiffiffiffiffi
3=2

p
is a good approximation to the

universal value for the Ising model [and correct up to
Oð"2Þ]. The choice (8) is known as the linear parametric
model, Ref. [14]. It describes the equation of state with
precision quite sufficient for our purposes. The linear para-
metric model is also known to be exact up to Oð"3Þ.
Using this parametric equation of state, we can calculate

the moments by taking derivatives at fixed t, up to an
overall normalization, unimportant in the present context
[it can be fixed by Eq. (3)]. In particular,

�4ðt; HÞ ¼
�
@3M

@H3

�
t
: (9)

For our purposes, it would be sufficient to use the approxi-
mate rational values of critical exponents � ¼ 1=3 and
	 ¼ 5, which are within a few percent of their exact values
in three dimensions. The result of Eq. (9) can then be
simplified to

�4ðt;HÞ¼�12
81�783�2þ105�4�5�6þ2�8

R14=3ð3��2Þ3ð3þ2�2Þ5 : (10)

We represent �4ðt; HÞ graphically as a density plot in
Fig. 1. We see that the 4th cumulant (and kurtosis) is
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negative in the sector bounded by two curved rays
H=t�	 ¼ �const (corresponding to � � �0:32).

Also in Fig. 1 we show the dependence of �4 along a line
which could be thought of as representing a possible map-
ping of the freeze-out trajectory (Fig. 2) onto the tH plane.
Although the absolute value of the peak in �4 depends on
the proximity of the freeze-out curve to the critical point,
the ratio of the maximum to minimum along such an H ¼
const curve is a universal number, approximately equal to
�28 from Eq. (10).

The negative minimum is small relative to the positive
peak, but given the large size of the latter, Refs. [7,15], the
negative contribution to kurtosis may be significant. In
addition, the mapping of the freeze-out curve certainly
need not be H ¼ const, and the relative size of the positive
and negative peaks depends sensitively on that.

The trend described above appears to show in the recent
lattice data, Ref. [10], obtained using Padé resummation of
the truncated Taylor expansion in �B. As the chemical
potential is increased along the freeze-out curve, the 4th

moment of the baryon number fluctuations begins to
decrease, possibly turning negative, as the critical point
is approached (see Fig. 2 in Ref. [10]).
Another observation is that ��4 grows as we approach

the crossover line, corresponding to H ¼ 0, t > 0 on the
diagram in Fig. 1(a). On the QCD phase diagram the
freeze-out point will move in this direction if one reduces
the size of the colliding nuclei or selects more peripheral
collisions (the freeze-out occurs earlier, i.e., at higher T, in
a smaller system).
Experimental observables.—In this section we wish to

connect the results for the fluctuations of the order parame-
ter field � to the fluctuations of the observable quantities.
As an example we consider the fluctuations of the multi-
plicity of given charged particles, such as pions or protons.
For completeness we shall briefly rederive the results of

Ref. [7] using a simple model of fluctuations. The model
captures the most singular term in the contribution of the
critical point to the fluctuation observables. Consider a
given species of particle interacting with fluctuating criti-
cal mode field �. The infinitesimal change of the field 	�
leads to a change of the effective mass of the particle by the
amount 	m ¼ g	�. This could be considered a definition
of the coupling g. For example, the coupling of protons in
the sigma model is g� �pp. The fluctuations 	fp of the

momentum space distribution function fp consist of the

pure statistical fluctuations 	f0p around the equilibrium

distribution np for a particle of a given mass, which itself

fluctuates. This gives

	fp ¼ 	f0p þ
@np
@m

g	�: (11)

Using this equation we can calculate the most singular
contribution from the critical fluctuations to the moments
or correlators of 	fp. The fluctuation of the multiplicity

N ¼ Vd
R
p fp is given by

	N ¼ 	N0 þ Vg	�d
Z
p

@np
@m

; (12)
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FIG. 1 (color online). (a) The density plot of the function
�4ðt; HÞ given by Eq. (10) obtained using Eq. (9) for the linear
parametric model Eqs. (6)–(8) and � ¼ 1=3, 	 ¼ 5. The �4 < 0
region is red, the �4 > 0 is blue. (b) The dependence of �4 on t
along the vertical dashed green line on the density plot in (a).
This line is the simplest example of a possible mapping of the
freeze-out curve (see Fig. 2). The units of t, H, and �4 are
arbitrary.
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FIG. 2 (color online). A sketch of the phase diagram of QCD
with the freeze-out curve and a possible mapping of the Ising
coordinates t and H.
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where d is the degeneracy factor (e.g., number of spin or
charge states of the particle). Neglecting, for clarity and
simplicity, the effects of quantum statistics, i.e., assuming
np � 1, we can use Poisson statistics for 	N0. Using

additivity of the cumulants (their defining property), and
assuming 	N0 and 	� are uncorrelated, the contribution of
the critical fluctuations can be expressed in terms of the
corresponding moments of the critical field � fluctuations.
For example, the contribution to the 4th moment can be
expressed as (cf. Refs. [7,15])

hð	NÞ4ic ¼ hNi þ h�4
Vic

�
gd

T

Z
p

np

p

�
4 þ � � � ; (13)

where 
p ¼ ðdEp=dmÞ�1 is the relativistic gamma factor

of a particle with momentum p and mass m. The first term
on the right-hand side of Eq. (13) is the Poisson contribu-
tion. We neglected np � 1 in the quantum statistics factor

ð1� npÞ for simplicity, and we denoted by ‘‘� � �’’ other
contributions, less singular at the critical point. The model
is admittedly crude, but it illustrates the mechanism and
correctly captures the most singular contribution near the
critical point.

In the region near the critical point where �4 ¼ h�4
Vic is

negative, the 4th cumulant of the fluctuations will be
smaller than its Poisson value, hNi. By how much will
depend sensitively on the correlation length (as �7),
i.e., on how close the freeze-out occurs to the critical point,
as well as on other factors (for protons, most significantly,
on the value of �B). We shall not attempt to estimate this
effect quantitatively in this Letter. The analysis of Ref. [15]
suggests, however, that this effect for protons can be
significant compared to the Poisson value already for
�� 2 fm.

Usual caveats apply: other (nontrivial) contributions to
moments which do not behave singularly at the critical
point can turn out to be relatively large. These include
initial geometry fluctuations, jets, and other nonequilib-
rium effects. In addition, charge conservation effects may
impose constraints on certain observables, such as total
charge fluctuations. It is beyond the scope of this Letter to
estimate these effects. A comprehensive review can be
found in Ref. [16]. The size of these background contribu-
tions could, in principle, be determined experimentally by
performing measurements away from the critical point.

We conclude by asking an obvious question: has the
effect of the negative kurtosis been observed? Data from
STAR indicate that at

ffiffiffi
s

p ¼ 19:6 GeV the ratio �4=�2

might be substantially smaller than its Poisson value 1,
see Fig. 6 in Ref. [17], while it is very close to 1 at higherffiffiffi
s

p
(smaller �B). Unfortunately, the statistics gathered in

the short run at
ffiffiffi
s

p ¼ 19:6 GeV are clearly not sufficient to
make a reliable conclusion. It would be interesting to see if
this effect persists with more statistics at this energy. If
confirmed, this result could indicate that the critical point is
close, at somewhat larger values of �B (smaller

ffiffiffi
s

p
). At

smaller values of
ffiffiffi
s

p
the effect should change sign, increas-

ing kurtosis above its Poisson value.
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