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We present a device-independent protocol to test if a given black-box measurement device is entangled,

that is, has entangled eigenstates. Our scheme involves three parties and is inspired by entanglement

swapping; the test uses the Clauser-Horne-Shimony-Holt Bell inequality, checked between each pair of

parties. In the case where all particles are qubits, we characterize quantitatively the deviation of the

measurement device from a perfect Bell-state measurement.
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Introduction.—The concept of device-independent in-
formation processing relies on performing reliable infor-
mation tasks on untrustworthy apparatuses. This idea first
showed its importance in quantum key distribution, where
security and privacy could be tested and assured even in the
hypothetical case that the cryptographic devices are pro-
vided by some malevolent third party [1–3]. Other tasks
were also generalized to the device-independent scenario,
such as random number generation [4] and quantum state
estimation [5], the latter starting an alternative approach to
self-testing [6].

Recently, the task of testing if a measurement device that
acts on a bipartite quantum system is entangled, that is, if at
least one of its eigenstates is not separable (or, more
generally, its positive operator-valued measure elements
do not factor in the subsystems), was introduced [7].
However, their solution is not device-independent, since
further assumptions are required. Here, we present a
device-independent realization of this task.

Specifically, in order to show that a measurement is
entangled, we are going to assess that it is entangling in
an entanglement swapping scenario [8]. Suppose A and B
are initially not entangled; rather, A is initially entangled
with a system CA and B with a system CB. Then, if a
measurement on CA � CB creates entanglement between
A and B, that measurement was entangled. To perform a
device-independent test means that we cannot assume this
scenario, but rather, we want to certify a posteriori that
swapping has indeed happened. Entanglement is checked
in a device-independent way using Bell’s inequalities.
Here we shall use only the Clauser-Horne-Shimony-Holt
(CHSH) inequality

S ¼ E11 þ E12 þ E21 � E22; (1)

where Exy¼pða¼bjx;yÞ�pða�bjx;yÞ and pða; bjx; yÞ
is the probability of getting results a and b given that
measurements x and y were performed.

It is important to stress that the only assumption that
may go into our test is the existence of two clearly defined

subsystems in Charlie’s hands (we shall see later that it can
be considered very natural in some implementations and
that it can be entirely dispensed with in the idealized cases
that we study below). No other assumption needs to be
made: For instance, the state could be of arbitrary Hilbert
space dimension and could be entangled along any
partition.
Protocol.—For each run, Alice chooses at random one

out of two measurements A1 or A2 with binary outcome
ai 2 f�1;þ1g; Bob, one of two measurements B1 or B2,
also with binary outcome bj 2 f�1;þ1g; and Charlie, one
out of three measurements C1, C2, or C3, with four out-
comes ck 2 f1; 2; 3; 4g. The goal is to guarantee that C3 is
an entangled measurement.
On the statistics resulting from a large number of repe-

titions, the following tests are performed: (i) The cases
where Charlie has measured C1 or C2 are used to test the
CHSH inequality both with Alice (SAC) and with Bob
(SBC). For this, Charlie has to define a classical processing
that transforms his four outcomes into two bits, one to be
correlated with Alice and one with Bob. (ii) When Charlie
has measured C3, Alice and Bob check the CHSH inequal-
ity among themselves, obtaining four numbers SABjc3 con-
ditioned on the result c3 obtained by Charlie:

SABj1 ¼ �SABj4 ¼ E11 þ E12 þ E21 � E22;

SABj2 ¼ �SABj3 ¼ E11 þ E12 � E21 þ E22:
(2)

Note that Alice and Bob do not need to know c3 in each
run, since their measurement settings are always the same.
The statistics (2) can be checked at the end of the whole
experiment. The setup is sketched in Fig. 1.
Nowwe are going to show that this protocol can lead to a

device-independent test of the fact that C3 is entangled. On
the one hand, notice that in quantum physics it is possible
to achieve

SAC ¼ SBC ¼ SABjc3 ¼ 2
ffiffiffi
2

p 8 c3 2 f1; 2; 3; 4g (3)
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already in a four-qubit scenario. The system is prepared in
the state j�þiACA

� j�þiBCB
. Alice’s and Bob’s measure-

ments are A1 ¼ Z, A2 ¼ X, B1 ¼ ðZþ XÞ= ffiffiffi
2

p
, and B2 ¼

ðZ� XÞ= ffiffiffi
2

p
. Charlie’s measurements are C1 ¼ ðZþ XÞ=ffiffiffi

2
p � Z and C2 ¼ ðZ� XÞ= ffiffiffi

2
p � X, and C3 is the Bell-

state measurement, in which outcome c3 2 f1; 2; 3; 4g
indicates the projection on one of the Bell states j�1i ¼
j�þi, j�2i ¼ j��i, j�3i ¼ j�þi, or j�4i ¼ j��i.

On the other hand, the observation that either SAC or SBC
is exactly 2

ffiffiffi
2

p
guarantees in a device-independent way that

(i) �AB is separable and (ii) Charlie’s system can be seen as

composite of two subsystems. Indeed, if (say) SAC ¼ 2
ffiffiffi
2

p
,

up to local isometries the tripartite state is �AC � �A0BC0 ,
where � ¼ j�þih�þj, while A0 and C0 represent addi-
tional degrees of freedom of Alice and Charlie that may
even be entangled among themselves and with Bob’s
system but are not involved in the measurements [9–11].
So, Charlie has two uncorrelated subsystems C and C0.
Moreover, if SABjc3 > 2 is observed for any value

of c3, then �ABjc3 must be entangled, which is possible

only if C3 is an entangling measurement given that �AB is
separable.

In summary, we have shown that

ðSAC ¼ 2
ffiffiffi
2

p
or SBC ¼ 2

ffiffiffi
2

p Þ and

SABjc3 > 2 ) C3 is entangling and entangled:
(4)

This is a device-independent result since only the monog-
amy induced by the maximal CHSH violation plays a role,
without any a priori assumption on the state, the Hilbert
space dimension, or the measurements.

The criterion (4) can be sharpened by exploiting both
SAC and SBC. The idea is that the value of S provides
information on the commutator between the two local
measurements of each party; so, SAC and SBC constrain
½A0; A1� and ½B0; B1�, respectively. In turn, something can
be inferred on the Bell operatorBAB, which determines the

maximal violation achievable with separable states.
Indeed, we can prove that

ðSAC ¼ 2
ffiffiffi
2

p
and SBC ¼ 2

ffiffiffi
2

p Þ and

SABjc3 >
ffiffiffi
2

p ���! C3 is entangled:
(5)

Here is a sketch of the proof (see the appendix for details):
One first shows that the first two conditions force the four

Bell operators BABjc3 to have 2
ffiffiffi
2

p
as the eigenvalue; then,

given such an operator, one shows that separable states can

reach only the value
ffiffiffi
2

p
, thus generalizing to the device-

independent scenario an observation made in earlier works
assuming qubits [12].
We have been able to derive only quantitative criteria

that rely on at least one between SAC and SBC being exactly

2
ffiffiffi
2

p
. The task of relaxing this constraint is left for future

work: the main difficulty arising from the fact that, even for
the smallest deviation from the ideal values, �AB cannot be
guaranteed to be separable anymore [13]. Similarly, one
cannot guarantee anymore, in a device-independent way,
that Charlie has two subsystems: As we mentioned above,
this is an assumption that must be made. This assumption
may, however, be very natural in some implementations, in
which Charlie receives one quantum signal from Alice and
one from Bob.
Characterizing a specific measurement.—In the pre-

vious section, we have contented ourselves with trying to
assess whether the measurement C3 is entangling and/or
entangled or not. However, the protocol that we defined
can lead to a much finer statement. Indeed, if one is close to
satisfying (3), the measurementC3 is close to an ideal Bell-
state measurement. It should therefore be possible to bound
the distance t between the actual and the ideal measure-
ment as a function of the observed violations. The deriva-
tion of this bound in a full device-independent scenario,
t � fDIðSÞ, hits the same difficulties as those encountered
in the simpler task of state estimation [5]. Here, we in-
troduce additional assumptions and obtain a bound
t � fðSÞ. Since obviously fðSÞ � fDIðSÞ, we can conclude
that a device-independent estimate of t will be at least as
bad as fðSÞ.
We go back to the four-qubit scenario described after

Eq. (3), and we keep everything as there, except for the
measurement C3: This is no longer a perfect Bell-state
measurement but is still assumed to be projective. One
does not know a priori which state to associate with each
result c3; however, once the measured data have been
sorted out according to c3, one can check all four versions
(2) of the CHSH inequality and associate to each value
of c3 the version that leads to the maximal violation.
This amounts to possibly relabeling the outcomes so
that the eigenstate jeci is the closest to j�ci for each
c 2 f1; 2; 3; 4g. We assume this to be the case from now on.
An operational measure of the distance between C3 and

an ideal Bell-state measurement is the trace distance

FIG. 1. The scenario consists of three parties A, B, and C,
spacelike separated, each holding a black-box device that per-
forms measurements on quantum systems. The protocol is
divided into two parts: (a) parties AC and BC evaluate the
CHSH inequality, considering measurements z ¼ 1; 2 are per-
formed on party C; (b) given that party C performed measure-
ment z ¼ 3, parties AB evaluate the CHSH inequality
corresponding to the result c.
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t ¼ max
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhecj�cij2

q
: (6)

This figure of merit represents the worst-case scenario,
since we are not specifying in which task the entangled
measurement is going to be used after the check.

Now, because of the choice of the local measurements of
Alice and Bob, the Bell operators corresponding to the four

inequalities (2) read BABjc ¼ 2
ffiffiffi
2

p ð�c ��5�cÞ, where

�k ¼ j�kih�kj. Therefore
SABjc ¼ 2

ffiffiffi
2

p ðjhecj�cij2 � jhecj�ð5�cÞij2Þ; (7)

and the two bounds 0 � jhecj�ð5�cÞij2 � 1� jhecj�cij2
lead finally toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

�
1�max

c

SABjc
2

ffiffiffi
2

p
�s
� t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�min

c

SABjc
2

ffiffiffi
2

p
s

: (8)

In particular, the upper bound is the expression fðSÞ we
were looking for, and it indicates how stringent are the
requirements for device-independent assessment of a mea-
surement. Recall that the trace distance is also the proba-
bility of distinguishing the real case from the ideal one
[14]. Requesting that this probability is 5% looks like a
pretty loose requirement; but, in order to confirm this
assessment in a device-independent way, one will have
observe at least mincSABjc * 2:8214 (Fig. 2). This number

is within 0.5% of the maximal value: No experiment has
reached such a high violation and precision, even leaving
aside that we are considering an entanglement swapping
experiment.

Conclusion.—We have presented a proposal for a
device-independent test of an entangled measurement.
Our proposal requires the use of three parties in an
entanglement swapping scenario. There are several exten-
sions and open problems which follow from our Letter.

In particular, our quantitative results rely on the fact that
either Alice or Bob violate the CHSH inequality maxi-
mally with Charlie; it will be necessary to extend these
results to less idealized situations.
One may also wonder if our tripartite scenario is the

simplest one. While we do not have a definite answer, we
conjecture that it would be impossible to achieve this task
in a scenario involving only two parties.
This work was supported by the National Research

Foundation and the Ministry of Education, Singapore,
and by the United Kingdom EPSRC. We thank the non-
local club of CQT and N. Gisin, M. Navascués, S. Pironio,
and T. Vértesi for discussions.
Appendix.—Given any two Hermitian operators A0 and

A1, with eigenvalues �1, acting on a Hilbert space H ,
there is a decomposition of H into a direct sum of sub-
spacesH i such that dimðH iÞ � 2 8 i and both A0 and A1

act within each H i, i.e., 8jc i 2 H i, A0jc i; A1jc i 2
H i [15]. Thus, the operators A0 and A1 can always be
written as A0 ¼ P

i�iA0�i and A1 ¼ P
i�iA1�i, respec-

tively, where �i are projectors onto subspaces H i. As a
consequence, any CHSH operator � acting on the Hilbert
space of a 2-qudit system, H ¼ Cd � Cd, can be decom-
posed into a direct sum of CHSH operators �i;j, each

acting on a 2-qubit subspace H i;j [16]; that is,

� ¼ �i;j�i;j ¼
X
i;j

ð�i ��jÞ�ð�i ��jÞ: (9)

To evaluate SSep ¼ maxf�2SgTrð��Þ, where S is the set

of separable states, we first note that, since the trace is
linear and S is a convex set, the maximum is attained over
the subset of extremal points. Hence, it suffices to consider
the set of pure product states P . Now, using (9) we have

SSep ¼ max
fj�i2P g

h�j�j�i ¼ max
fj�i2P g

h�j �i;j �i;jj�i

¼ max
fj�i;ji2P g

X
i;j

pi;jh�i;jj�i;jj�i;ji; (10)

where j�i;ji ¼ ð�i ��jÞj�i= ffiffiffiffiffiffiffi
pi;j

p
and pi;j ¼ h�jð�i �

�jÞj�i. By convexity, the above expression is upper

bounded by the largest mean value among the 2-qubit
Bell operators �i;j attained by 2-qubit pure product states:

SSep ¼ max
fj�i;ji2P g

X
i;j

pi;jh�i;jj�i;jj�i;ji

� X
i;j

pi;j max
fj�i;ji2P g

h�i;jj�i;jj�i;ji

� max
fj�i2P ;ði;jÞg

h�j�i;jj�i: (11)

According to Ref. [17], the spectral decomposition of any
2-qubit CHSH operator is, up to local unitaries, � ¼P

4
i¼1 �ij�iih�ij, where the eigenvectors j�ii are Bell

states and the eigenvalues are functions of the local ob-
servables, with �1 ¼ ��3, �2 ¼ ��4, and �2

1 þ �2
2 ¼ 8.

Let �i;j be the largest eigenvalue of �i;j. Thus we have
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FIG. 2 (color online). In the four-qubit scenario we consider
the value of SABjc as a device-assessment criterion, where the

blue lines show the bounds on the trace distance of the mea-
surement device. The violation Sobs � 2:8214 guarantees the
trace distance of the measurement device to be at most 5%
from the ideal, as shown by the dashed line.
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SSep ¼ max
fj�i2P ;ði;jÞg

h�j�i;jj�i

¼ max
fj�i2P ;ði;jÞg

�i;j½jh�j�1ij2 � jh�j�3ij2�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� �2

i;j

q
½jh�j�2ij2 � jh�j�4ij2�: (12)

Without loss of generality, we do not consider the local
unitaries in the spectral decomposition of � since they can
be absorbed into the states j�i. The largest overlap be-
tween a pure product state and a Bell state is 1=2; thus, we

have SSep ¼ maxfði;jÞgð�i;j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� �2

i;j

q
Þ=2.

Note that �i;j � 2 for all ði; jÞ. This is because the

largest eigenvalue � of � is given by the positive square
root of the largest eigenvalue of �2, which is lower
bounded by 2 [18]. We observe that the above function
decreases as � increases. This way, the maximum is
attained for the subspace ði; jÞ such that �i;j is minimum.

Then, defining � as the smallest eigenvalue of � such that
� � 2, we have

SSep ¼ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� �2

p

2
: (13)

This generalizes to all dimensions the results of Ref. [12].

Theorem.—If SAC ¼ SBC ¼ 2
ffiffiffi
2

p
, and C3 is a separable

measurement, then SABjc3 �
ffiffiffi
2

p
.

Proof of theorem.—As previously stated, if SAC ¼
SBC ¼ 2

ffiffiffi
2

p
, then, for all subspaces ði; jÞAC and ðk; lÞBC

where the initial states shared by parties AC and BC have
support, the states are (up to local isometries) maximally
entangled and are completely uncorrelated from any other
system. Thus, any state steered by measurement C3—
assuming it is separable—to parties AB will be a product
and will have support at most of the same subspaces of
H A and H B where the initial states have support.

Moreover, implicit in SAC ¼ SBC ¼ 2
ffiffiffi
2

p
is the statement

that in every subspace ði; jÞAC and ðk; lÞBC where the initial
states have support the CHSH operators �i;j and �k;l have

maximal eigenvalues�i;j ¼ �k;l ¼ 2
ffiffiffi
2

p
. This immediately

implies that, for the same subspaces, the CHSH operators
in parties AB, �i;k, will also have maximal eigenvalues

�i;k ¼ 2
ffiffiffi
2

p
; this follows from Ref. [18].

Thus, we conclude that for all subspaces ði; kÞ where
the final steered (separable) state for AB has support the

2-qubit CHSH operators have the maximum eigenvalue

2
ffiffiffi
2

p
. Hence, from (13), we finally get

SABjc3 �
ffiffiffi
2

p
: (14)
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