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Biological responses often obey Weber’s law, according to which the magnitude of the response

depends only on the fold change in the external input. In this study, we demonstrate that a system

involving a simple autocatalytic reaction shows such a response when a chemical is slowly synthesized by

the reaction from a faster influx process. We also show that an autocatalytic reaction process occurring in

series or in parallel can obey Weber’s law with an oscillatory adaptive response. Considering the

simplicity and ubiquity of the autocatalytic process, our proposed mechanism is thought to be commonly

observed in biological reactions.
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Adaptation is ubiquitous in biological systems. In per-
fect adaptation, some state variables of a biological system
change in response to a change in the external conditions
but slowly come back to their original values [1]. Such
adaptation is observed in signal transduction, sensory,
neural systems, and so forth. Several theoretical studies
have investigated such adaptation by using a set of ordinary
differential equations, in which certain variables return to
their original values independently of the parameter values
representing the external condition [2–5].

Responses in a biological system have another ubiqui-
tous characteristic: the degree of response is often propor-
tional to the ratio of an external stimulus before and after it
is applied, rather than the absolute difference. In other
words, the response detects the fold change, which is
commonly known as Weber’s law. This kind of response
was discovered in the field of psychology, wherein it was
observed that our sensory response is proportional to the
logarithm of the magnitude of an external stimulus.

Recently, Weber’s law was also observed to be obeyed
by cellular responses in microorganisms [6]. Shoval et al.
[7] further defined fold-change detection (FCD) in a sense
stronger than Weber’s law: not only the magnitude of the
response peak but also the entire relaxation profile over
time depends only on the change ratio of the stimuli. The
relaxation profile over time is identical as long as the ratio
is constant, irrespective of the absolute magnitude of stim-
uli. Shoval et al. also developed a theoretical model for
such FCD by using a feed-forward gene regulation net-
work. However, ubiquity of this FCD is not yet confirmed,
in contrast to universality of Weber’s law.

An adaptive response usually has two components: rapid
response to a change and slow relaxation to the original
state. Oosawa and Nakaoka confirmed the existence of
these distinct timescales in the adaptive response of
Paramecium to chemotaxis and also the relevance of their
existence to chemotaxis [8] (see also [5]). It is therefore

important to elucidate the relevance of such a timescale
difference to Weber’s law for adaptation.
Most biochemical reactions are catalytic, while replica-

tion of molecules as well as allosteric enzymatic reactions
often involve autocatalytic regulation [9–11]. In the
present Letter, we show that a simple system with autoca-
talytic reactions exhibits an adaptive response according to
Weber’s law if the autocatalytic process is slow. Because
the autocatalytic process often involves several steps and
requires a long time for completion, the ubiquity of adap-
tive responses obeying Weber’s law of a cell can be easily
understood from this simple system. We also demonstrate
Weber’s law in a system of chained or parallel-connected
autocatalytic reactions. In addition, we explore oscillatory
adaptation with Weber’s law and establish a condition
for it. Finally, we discuss the relevance of the results to
biological responses.
First, we study a simple reaction model of two chemicals

X0 and X1 with the following autocatalytic reaction, as
introduced in [5]: X0 þ X1 ! 2X1; the model also includes
(a) the synthesis of X0 from an external resource chemical
S as S ! X0 and (b) the degradation of X0 and X1. By
representing the concentrations of the two chemicals as x0
and x1 and suitably scaling the time and concentration
variables, we get the rate equation as

dx0=dt ¼ S� x0x1 � x0; dx1=dt ¼ ðx0x1 � x1Þ=�: (1)

Among the two fixed-point solutions of Eq. (1), we focus
on the steady state x�0 ¼ 1, x�1 ¼ S� 1 [12]. According to a
linear stability analysis, this state is stable when S > 1,
i.e., as long as x�1 > 0. It should be noted that x�0 is inde-

pendent of S. The chemical concentration responds to the
concentration of the external signal, S; when S increases
(decreases), x0 increases (decreases) from its steady-state
value but later returns to the original value. Thus, X0

always shows an adaptive response, whereas the steady-
state concentration of X1 changes with S.
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To examine Weber’s law, we study the response of x0
when S changes as S0 ! pS0ðp > 0Þ, and calculate the
dependence of the peak value of x0 during this change in S.
We assume � � 1, which is required to ensure a fast
response and slow adaptation. Under the adiabatic limit,
x1 changes more slowly than x0 does. During the fast
response of x0 to the change in S, x1 can be assumed to
remain at the steady-state value under the condition of
S ¼ S0. Then, the peak value of x0 is obtained from
ðdx0=dtÞx0¼x

peak
0

¼ 0 by fixing the value of x1 to S0 � 1.

A straightforward calculation gives us xpeak0 ¼ p. In a

similar way, the peak time tpeak is estimated from
ðdx0=dtÞ � S� S0x0 and tpeak is given by �1=S0 [13].
Hence, x0 changes from the original value x�0 ¼ 1 to

xpeak0 ¼ p and returns to the original value. This amplitude

of the response depends only on p, i.e., the ratio of the shift
in S, and is independent of the S0 value. Thus, our model
demonstrates Weber’s law under the adiabatic condition.

The time scale for adaptation is estimated from the
Jacobi matrix at the fixed point (x�0, x

�
1). As its eigenvalue

with a smaller absolute value is given by�� 1=� for large
S, the time scale for adaptation is given by �� and is
independent of S. However, the peak time tpeak is given
by �1=S0. Thus, the temporal profile of the response
depends not only on p but also on S0. In this sense, our
considered model does not satisfy the condition for FCD
in [7].

We note that the adiabatic condition need not be rigid in
order for Weber’s law to be demonstrated reasonably
well. Figure 1 shows a plot of the peak-value ratio

ðxpeak10 � x�0Þ=ðxpeak20 � x�0Þ obtained by multiplying S p�
fold from S10 or S20, respectively, as a function of �. The
ratio is close to unity; it is independent of the initial S0 as
long as �=tpeak � �S0 * 100. In a previous study, we
determined that for efficient chemotaxis [5], the ratio of
the relaxation time to the response time to sense the
environmental changes is on the order of 100, at several
microorganisms such as Paramecium [8] and E. coli [14].

Thus, as estimated above, Weber’s law is approximately
satisfied for this time scale.
Adaptation obeying Weber’s law is not restricted to this

two-component reaction system; in fact, it is generally
observed in a system with autocatalytic reactions with a
slower timescale. We study several extensions of autoca-
talytic reaction networks showing adaptation with Weber’s
law. First, we consider an autocatalytic reaction occurring
in series with N chemicals, as S ! X0 ! X1 ! . . . !
XN�1. The rate equations are given by

dx0=dt¼ðS��1x0x1�x0Þ=�0;
dxi=dt¼ð�ixi�1xi��iþ1xixiþ1�xiÞ=�iði�0;N�1Þ;

dxN�1=dt¼ð�N�1xN�2xN�1�xN�1Þ=�N�1: (2)

Then, the steady-state concentrations are obtained as x�0 ¼
S=ð�1x

�
1 þ 1Þ, x�i ¼ ð�iþ2x

�
iþ2 þ 1Þ=�iþ1ði � 0; N � 2Þ,

and x�N�2 ¼ 1=�N�1. Accordingly, both the steady-state

concentrations x�N�2 and x
�
N�2m (m> 1) are independent of

the external-signal concentration S, and these results show
the adaptive response to the change in S. Here, we also note
that the adaptation alone of the chemical xN�2 depends
only on the reaction process XN�3 ! XN�2 ! XN�1. As
long as this chain reaction is autocatalytic and XN�2 in-
creases with S, xN�2 undergoes perfect adaptation. We can
modify other reaction processes while retaining the adap-
tive response of XN�2.
First, we study the case of N ¼ 3 in detail. For simplic-

ity, we use �i ¼ 1. Suppose xi > 0; the steady state is
given by x�0 ¼ S=2, x�1 ¼ 1, and x�2 ¼ ðS� 2Þ=2, which is

linearly stable if S > 2 and x1 shows adaptive response to
the change in S. The relaxation process to the state, how-
ever, depends on the time scale, as is confirmed from the
eigenvalues of the Jacobi matrix (Fig. 2). To achieve a
normal adaptive response with monotonic relaxation,
�0 � �1, �2 is required (for large S, 8�0 < �2 and �0=2<
�1=S < �2=32 [15]): otherwise, the system would show an
adaptive response with damped oscillation.
An adaptive response with damped oscillation has often

been observed in experiments, e.g., in [16,17]. In contrast,
theoretical models for such oscillatory adaptation have
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FIG. 1 (color online). Plot of ratio of maximum response

amplitude �2=�1 (ordinate axis) versus �(abscissa axis). �i ¼
x
peaki
0 � x�0 with the change Si0 ! pSi0. �2=�1 ¼ 1 implies the

independence of the response amplitude from the Si0 value, or

Weber’s law. Data with three different (S10, S
2
0, p) sets are shown:

ðS10; S20; pÞ ¼ ð5; 50; 2Þ for þ, ðS10; S20; pÞ ¼ ð5; 500; 2Þ for �, and

ðS10; S20; pÞ ¼ ð5; 50; 10Þ for �.
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FIG. 2 (color online). Behaviors of an adaptive variable (x1) in
the N ¼ 3 case. Responses corresponding to S ¼ 100 ! 200 at
t ¼ 0 and S ¼ 200 ! 400 at t ¼ 40 are shown, respectively.
(Left) �0 ¼ 0:01, �1 ¼ 1, �2 ¼ 10 and (Right) �0 ¼ 2, �1 ¼ 1,
�2 ¼ 1, zoomed in the inset.
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rarely been explored. Our proposed model provides a
simple example of an oscillatory adaptive response.

In an autocatalytic reaction chain as well, Weber’s law
for responses is obeyed for only a certain range of parame-
ters. Here, we study the conditions for Weber’s law in the
N ¼ 3 case as an example. To analyze this case, we again
study the system response to the change in S as S0 !
pS0ðp > 0Þ. By setting �0 � �1 � �2, we study the dy-

namics of x1 and its peak value (x
peak
1 ) during an adaptive

response. Since the change in x0 is much faster than that in
x1, x0 is assumed to take the equilibrium value defined
from the present x1 value, and hence, x0 is obtained from
dx0=dt ¼ 0 as x0 ¼ pS0=ð1þ x1Þ for given x1. However,
x2 still remains at the equilibrium value under the condition

S ¼ S0, i.e., x2 ¼ ðS0 � 2Þ=2. Using these values, xpeak1

that satisfies ðdx1=dtÞx1¼xpeak
1

¼0 is given by x
peak
1 ¼2p�1.

Accordingly, x
peak
1 � x�1 ¼ 2ðp� 1Þ depends only on the

ratio of change in S and not on the S0 value itself. Thus, the
model given by Eq. (2) with N ¼ 3 obeys Weber’s law
under the limits of �0=�1 ! 0 and �2=�1 ! 1.

To examine the validity of the above approximation, we
numerically studied the peak-amplitude ratio of x1 under
varying �2 and �0 and constant �1. This condition corre-
sponds to the upper-left area in Fig. 3, where Weber’s law
is confirmed and x1 shows a monotonic relaxation. In
Fig. 3, however, we find another regime that (approxi-
mately) satisfies Weber’s law in the lower-right triangle,
where x1 shows a damped oscillation and the above adia-
batic conditions are not satisfied. Indeed, in this case,
Weber’s law is well obeyed for large S and �0.

We now consider the response in the case that S changes
as S0 ! pS0ðp > 0Þ with �0 � �1, �2 and S0 � 1. We
solve Eq. (2) with the initial condition x0ð0Þ ¼ S0=2,
x1ð0Þ ¼ 1, and x2ð0Þ ¼ ðS0 � 2Þ=2 to obtain the first
peak in x1 at t ¼ tpeak, which is expected to be tpeak � 1
because S is sufficiently large. From the assumption
of large S and �0 � �1, x0 is solved approximately as

x0ðtÞ � S0
2 þ ðp�1ÞS0

�0
t for small t. Then, we get

d lnx1
dt

� S0ðp� 1Þ
�0�1

t� S0
ðS0 � 2Þ�1 fx2ðtÞ � x2ð0Þg: (3)

Temporarily neglecting the latter term for small t, we
get x1 � exp½S0ðp� 1Þt2=ð2�0�1Þ�. By substituting this
in dðlnx2Þ=dt ¼ ðx1 � 1Þ=�2, we get x2 ¼ x2ð0Þ exp½ðp�
1ÞS0t3=ð6�0�1�2Þ�. Now, with this increase in x2, the sec-
ond term in Eq. (3) is no longer negligible, as a result of
which the sign of Eq. (3) changes to negative and x1 stops
increasing. Thus, the time of occurrence of the first peak in
x1 is estimated from the time when the first term is equal to
the second one as ðtpeakÞ2 � 12�1�2=S0. By substituting
this value in the expression of x1, the peak value of x1 is

roughly estimated as x
peak
1 �exp½f6ðp�1Þ�2g=�0�. Hence,

the maximum amplitude depends on the change ratio of S
and not on S0. Next, we numerically verified the depen-
dence of the peak amplitude on �’s from the original
equation [Eq. (2)]. As shown in Fig. 4, the above approx-
imations give good estimates for the peak position and
explain the validity of Weber’s law.
Note that we need to satisfy tpeak � �0 as �0 takes the

largest value among the three in this area. Then, we get

�1�2=�
2
0 � S0=12; (4)

which explains the boundary condition in the lower-right
area. Note that the peak value itself increases as �2=�0
increases. Hence, to achieve an oscillatory response with a
large amplitude, the value on the left-hand side of Eq. (4)
should preferably be large. Then, an oscillatory response
with Weber’s law with a relatively large peak will be
obtained at the border of the above condition.
For N > 3 as well, xN�2 shows an adaptive response

with both monotonic relaxation and damped oscillation.
For the former case, by carrying out similar analysis with
N ¼ 3 case, Weber’s law is shown to hold under the
condition of �0; � � � ; �N�3 � �N�2 � �N�1. According
to Eq. (2), xN�2m (m> 1) also shows an adaptive response,
and Weber’s law for xN�2m is satisfied when
�0; � � � ; �N�2m�1 � �N�2m � �N�2mþ1, i.e., if all pro-
cesses of influx are fast and only the next runoff process
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FIG. 3 (color online). Phase diagram with �0=�1 (abscissa
axis) and �2=�1 (ordinate axis). Ratio of the maximum response
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peak
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FIG. 4 (color online). Comparison between results of numeri-
cal simulation (points) and approximate calculation (lines).

lnðxpeak1 Þ and ðtpeakÞ2 are shown as a function of �2 with �1 fixed

to 1. lnðxpeak1 Þ with �0 ¼ 100ðþÞ and �0 ¼ 1000ð�Þ and ðtpeakÞ2
with �0 ¼ 100ð�Þ and �0 ¼ 1000ðhÞ are taken from the numeri-

cal simulation. The estimates of lnðxpeak1 Þ with �0 ¼ 100 (dotted

line) and �0 ¼ 1000 (broken line) and ðtpeakÞ2 (straight line) in
the text are also shown.
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is slow. Weber’s law with damped oscillation is also sat-
isfied for large S and �0.

We also studied the case of catalytic reaction networks
having parallel paths. Two types of extensions are possible.
In one extension, many terminal chemicals exist instead of
a single x1 in Eq. (1), which are reached in parallel from x0
(S ! X0 ! X1

1 , X
2
1 , X

3
1 ; � � �Xk

1). It can be straightforwardly

shown that variable x0 shows an adaptive response, since

the mean field of all xj1’s acts as the variable of x1 in the

original two-variable case. Moreover, in this type of ex-
tension, each catalytic reaction need not be autocatalytic;

that is, the reaction from x0 to xj1 can be catalyzed by xm1
with j � m. Adaptation obeying Weber’s law is possible in
the adiabatic limit. The other extension includes reaction
paths in two or more rows, each of which is a series
reaction, as in the case of variable N (S ! Y0 ! A1 !
� � �AN ! Y1 and S ! Y0 ! B1 ! � � �BM ! Y1). Here,
both an input variable (y0) and an output variable (y1)
can show adaptive responses only when there are an odd
number of elements in each row (N and M). In this case,
adaptation obeyingWeber’s law is again possible, but there
usually are more restrictions on the parameter values.

In this Letter, we have demonstrated that a simple auto-
catalytic reaction process in a system leads to its adaptation
that obeys Weber’s law. We first confirmed such an adap-
tation in an autocatalytic reaction of two variables.
Coupling of one more variable to the reaction led to
oscillatory adaptation obeying Weber’s law. It would be
interesting to explore such an adaptive response experi-
mentally. Indeed, such an oscillatory adaptation was ob-
served in cAMP concentration in Dictyostelium cells [16].

Generally, cells undergo autocatalytic reactions to rep-
licate themselves, where complex autocatalytic reactions
are often slower than simple catalytic ones. For example, in
a sequential reaction process for the synthesis of a biopol-
ymer that has catalytic activity for this chain reaction, more
time would generally be required for a longer polymer.
Also, the autocatalytic regulation exists in a system with
allosteric enzyme reaction [11], and the (chain) autocata-
lytic reaction as in our model is known to exist in glyco-
lytic reaction [11,18], as well as in the response to cAMP in
Dictyostelium [19]. The results of this study suggest that
adaptive response obeying Weber’s law is generally ob-
served in such systems with slow autocatalytic reactions.

Adaptation or habituation refers to a general property of
a biological system to exhibit homeostasis, whereas
Weber’s law is applicable to a system exhibiting a sensory
response over a wide range of environmental conditions.
The variation in an external parameter Swill often increase
with its value. Then, if the response were just proportional
to the difference in the external parameter before and after
the input, it would be too sensitive to large S and would not
be able to generate a reliable response under external noise.
Thus, a response to fold change with Weber’s law is
applicable to sensory systems in general.

Here, Weber’s law was obeyed in an autocatalytic reac-
tion system with time scale differences, without any spe-
cial design or tuning of the parameters. Because of its
simplicity, the present mechanism is expected to have a
wide range of applications. It may also offer fresh perspec-
tives on Weber’s law in general, including psychological
and neural perspectives. Indeed, our proposed model can
be regarded simply as a system with self-positive feedback
and is not necessarily restricted to chemical reactions.
The authors would like to thank K. Kamino, S. Sawai,
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