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While nuclear magnetic resonance diffusion experiments are widely used to resolve structures confining

the diffusion process, it has been elusive whether they can exactly reveal these structures. This question is

closely related to x-ray scattering and to Kac’s ‘‘hear the drum’’ problem. Although the shape of the drum

is not ‘‘hearable,’’ we show that the confining boundary of closed pores can indeed be detected using

modified Stejskal-Tanner magnetic field gradients that preserve the phase information and enable imaging

of the average pore in a porous medium with a largely increased signal-to-noise ratio.
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Nuclear magnetic resonance (NMR) diffusion experi-
ments are widely used to evaluate the structure of cells and
porous media hindering the diffusion process [1]. Although
research has been actively conducted in this field for
over 50 years, it is still elusive whether NMR diffusion
experiments can exactly resolve boundaries restricting the
diffusion process [2–5]. This problem bears great similar-
ity to x-ray scattering experiments, for example [6–8]: It is
well known that the squared magnitude of the Fourier-
transformed pore space function—which is the analogue
to the form factor—can be measured, but the inverse trans-
formation cannot be performed since the phase information
is lost using current techniques. Since diffusion and the
wave equation are both governed by the Laplace operator,
this problem is also closely related to Kac’s famous ques-
tion ‘‘Can you hear the shape of the drum?’’ [9], which was
answered negatively by Gordon, Webb, and Wolpert [10]:
It is in general not possible to reveal the shape of a drum
just by hearing it, or equivalently, it is not possible to reveal
the shape of a closed domain by knowledge of the spec-
trum—or eigenvalues—of the Laplace operator.

We address the following question in this Letter: While
the information about the diffusion process that is encoded
in the eigenvalues generally does not make it possible to
detect the boundary [10], do the additional degrees of
freedom present in diffusion NMR—namely, that the spa-
tial profile of the magnetic field can be temporally varied—
offer additional information such that the boundary of a
closed domain can be unambiguously detected in NMR
diffusion experiments?

In an NMR imaging experiment, the spin magnetization,
which is initially aligned along the main magnetic field, is
tipped by a radio frequency pulse into the plane transversal
to the main magnetic field. Then, the transversal spin
magnetization rotates with a characteristic frequency, the
Larmor frequency ! ¼ �B, around the main magnetic
field, where � is the gyromagnetic ratio. The magnetization
emits radio waves of frequency ! which can be detected.

The spatial information in NMR imaging is usually en-
coded by applying magnetic field gradients. For example,
if the gradient amplitude is G, and the background mag-
netic field is B0, then the actual magnetic field is B ¼ B0 þ
G � x, where x is the position of the particle. Usually, a
coordinate system that rotates with the Larmor frequency
of the main magnetic field !0 ¼ �B0 is employed. In this
coordinate system, the expectation value of the phase that
the particle acquires is ’ ¼ �TG � x if the gradient is
applied for the time T. For simplicity, we will call this
spin phase expectation value the particle’s phase in the
following. Thus, the spatial location of the particles is
encoded through the acquired phase and can thus be de-
termined by appropriate experiments.
In diffusion NMR, a bipolar set of magnetic field gra-

dients is applied. The first gradient has an amplitude G1

and duration T1 and is followed by a second gradient of
amplitude G2 and duration T2. Since being introduced by
Stejskal and Tanner in 1965 [4,11], the standard approach
is to setG1 ¼ �G2 and T1 ¼ T2. Suppose that the gradient
durations T1 and T2 are shorter than the typical time scale
of the diffusive motion and that the particle translates from
position x1 to position x2 in a time interval between the
gradients. Then, the phase of the particle is approximately
’¼�T1G1 �x1��T2G2 �x2 ¼�T1G1 � ðx1�x2Þ. Thus,
the phase encodes the displacement of the particle, allowing
the measurement of the diffusion process. Since the particles
move randomly, different particles acquire different phases
in general, and the measured signal is determined by the
distribution Pð’Þ of these phases.
In the present work, we investigate gradient settings in

which G1 deviates from G2, while G1 � T1 ¼ �G2 � T2 is
fulfilled.
We first adapt the results that Mitra and Halperin [12]

obtained for the case G1 ¼ �G2. Assuming that a time-
dependent magnetic field gradient GðtÞ is applied, a ran-
dom walker acquires the phase ’ ¼ �

R
GðtÞ � xðtÞdt,

where xðtÞ is the particle position at time t [6]. The
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transversal magnetization vector M ¼ ðMx;MyÞT is often

expressed by the complex magnetizationMxy ¼Mxþ iMy,

since this allows us to express the measured normalized
signal by

S ¼ hexpð�i’Þi ¼
�
exp

�
�i�

Z T

0
GðtÞ � xðtÞdt

��
; (1)

where h�i denotes an average over all random walks. In the
following, we will denote S by ‘‘signal.’’ The temporal
gradient profiles G�1;�2

ðtÞ are defined by

G �1;�2
ðtÞ ¼ G�

8<
:
�1 for 0< t < T�1
�1=�2 for Tð1� �2Þ< t < T
0 otherwise:

(2)

Here, T is the total duration of the temporal gradient
profile; �1 and �2 are dimensionless and describe the
relative length of the first and second gradient. The q value
is defined by the magnitude q of the vector q ¼ �GT�1.
Using the temporal gradient profileG�1;�2

ðtÞ, Eq. (1) can be
expressed as

SðqÞ ¼
�
exp

�
iq �

�
1

T�1

Z T�1

0
xðtÞdt

� 1

T�2

Z T

Tð1��2Þ
xðtÞdt

���
: (3)

The integral 1
T�1

RT�1

0 xðtÞdt can be interpreted as the

center of mass of the random walk trajectory ranging
from xð0Þ to xðT�1Þ [12]. Introducing the centers of

mass of the individual random walk trajectories xc:m:;1 ¼
1

T�1

RT�1

0 xðtÞdt and xc:m:;2 ¼ 1
T�2

R
T
Tð1��2Þ xðtÞdt, Eq. (3)

becomes

SðqÞ ¼ hexp½iq � ðxc:m:;1 � xc:m:;2Þ�i: (4)

Thus, the signal is connected to the trajectory displace-
ments through the wave vector q. For closed domains and
long gradient duration, the particle was at every position
within the boundary with an equal probability. Thus, the
expectation values are hxc:m:;1i ¼ hxc:m:;2i ¼ xc:m:, where

xc:m: is the center of mass of the pore space function of a
closed domain. The pore space function �ðxÞ is one inside
the domain and zero outside the domain.

Previously, the limit of short gradient durations
�1 ! 0 and �1 ¼ �2 has been investigated extensively
[6,8,11,13–15]. In this limit, xc:m:;1 and xc:m:;2 are approxi-

mately equal to the initial and final particle positions x1

and x2. Assuming that the pore is closed, and that the time
T between the gradients is so long that initial and final
position are not correlated, Eq. (4) becomes

SðqÞ ¼ hexp½iq � ðx1 � x2Þ�i
¼ hexp½iq � x1�ihexp½�iq � x2�i: (5)

Since it is assumed that the diffusion process is in the
long time limit, the final particle position can be anywhere

within the closed pore domain with equal probability,
independently of the starting position. Hence,

hexp½iq � x1�ihexp½�iq � x2�i
¼

Z
�
dx1 expðiq � x1Þ

Z
�
dx2 expð�iq � x2Þ

¼ ~��ðqÞ~�ðqÞ ¼ j~�2ðqÞj: (6)

Here, the integration is performed over the domain�, in
which �ðxÞ is equal to one. Thus, it is possible to measure
the power spectrum of the pore space function, but, as, for
example, in x-ray scattering experiments, the inverse
Fourier transform cannot be performed since the phase
information is lost [6–8]. The quantity j~�2ðqÞj is the ana-
logue to the form factor.
In diffusion NMR, the loss of the phase information is a

direct consequence of the antisymmetry G�1;�1
ðtÞ ¼

�G�1;�1
ðT � tÞ of the temporal gradient profile [5,16].

As we show in the following, the phase information of
the signal can be preserved, if the temporal gradient profile
G�1;�2

ðtÞ is used and if �1 � �2. First, we consider the

temporal gradient profileG�1;�2
ðtÞ for which �1 is approxi-

mately equal to 1 and �2 is approximately equal to 0. Then,
the signal in the long time limit becomes

SðqÞ ¼ hexp½iq � ðxc:m: � x2Þ�i
¼ exp½iq � xc:m:�

Z
�
dx2 expð�iq � x2Þ

¼ exp½iq � xc:m:�~�ðqÞ:
(7)

Thus, the pore space function can be determined exactly by
inverse Fourier transformation.
These findings can be interpreted as follows: If the first

gradient is applied for a sufficiently long time, the random
walker acquires a phase identical to that of a particle
located at the center of mass of the domain. On the other
hand, the second gradient is too short for diffusion dynam-
ics to be of any importance. It merely produces a linear
phase dispersion, as does an ordinary NMR imaging gra-
dient [6]. Therefore, the experiment feigns to be a diffusion
experiment, but it is actually an imaging experiment in
disguise: The dynamics are completely lost. Hence, it
follows naturally—against the current doctrine [5]—that
the diffusion-weighted signal may bear a phase just as the
signal does in standard magnetic resonance imaging.
We validated these theoretical results using the matrix

approach described in [5,17,18], which is similar to the
earlier approach [19,20], and which calculates the effect of
arbitrary temporal diffusion gradients on the diffusion-
weighted signal. An equilateral triangular domain was
considered (cf. Fig. 1) [21]. L is the length of the triangle
edges.
Figure 1 shows the real and imaginary parts of the

simulated diffusion-weighted signal for the equilateral tri-
angle with diffusion weighting along the y direction (dots).
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The solid line represents the Fourier transform of the pore
space function, and the dashed line represents the signal
calculated using the Gaussian phase approximation. The
Gaussian phase approximation states that the signal S ¼
hexpð�i’Þi is approximately equal to S ¼ expð� 1

2 h’2iÞ,
where h’2i is the second moment of the phase distribution
Pð’Þ [5,22,23]. The parameter h’2i is an important pa-
rameter since it is often approximately proportional to the
second moment of the displacements h½xðTÞ � xð0Þ�2i [24].
The Gaussian phase approximation is convenient since it is
correct for free diffusion (with a Gaussian diffusion propa-
gator), but also applicable for a wide range of experimental

settings in diffusion NMR, for which the diffusion propa-
gator is not necessarily Gaussian [5]. It is a general result
that the signal can be calculated by applying the Gaussian
phase approximation in the long time limit if long diffusion
gradients are applied [5]. In Fig. 1, the Gaussian phase
approximation is perfectly valid for classical Stejskal-
Tanner gradients (�1 ¼ �2 ¼ 1=2), which correspond to
the conventional diffusion weighting regime and for which
the phase of the signal is zero. For temporally asymmetric
gradients, the Gaussian phase approximation is valid for
low q values and breaks down at large q values. The
smaller �2 is, the more the obtained diffusion-weighted
signal approaches the Fourier transform of the pore space
function. Thus, there is a smooth transition between the
‘‘diffusion weighting’’ and the ‘‘imaging’’ regime.

FIG. 2 (color). Fourier transform of the diffusion-weighted sig-
nal for an equilateral triangular domain. Current standard tech-
niques are depicted in (a) and (b). Temporally elongated magnetic
field gradients (a) yield an approximately Gaussian-shaped curve
that describes the displacement probability of the centers of mass
of the two trajectories that a particle moves along during the first
and second gradient [see Eq. (4)]. Temporally narrow gradients
(b) yield the squared magnitude of the Fourier-transformed pore
space function. Since the phase information is lost, the inverse
transformation cannot be performed properly and the triangular
structure is lost. (c) This diffusion experiment with temporally
asymmetric gradients is essentially a disguised NMR imaging
experiment and thus reveals the exact shape of the domain.
(d) Using temporally moderately asymmetric gradient profiles
yields a mixture contrast of (a) and (c). The profile (d) is advanta-
geous since the hardware requirements are less demanding than for
(c), while much of the structural information is still observable.
Parameters: L ¼ 10 �m, D ¼ 1 �m2=ms, T ¼ 100 ms, maxi-
mal q value ¼ 40 �m�1, increment of q values ¼ 0:5 �m�1.
(a) �1 ¼ �2 ¼ 1=2. (b) �1 ¼ �2 ¼ 1=100. (c) �1 ¼ 99=100,
�2 ¼ 1=100. (d) �1 ¼ 4=5, �2 ¼ 1=5.

FIG. 1 (color). (a) Real and (b) imaginary parts of the
diffusion-weighted normalized signal (dots) for the equilateral
triangle with a diffusion gradient applied along the y direction
(�1 ¼ 1� �2, L ¼ 5 �m, free diffusion constant D ¼
1 �m2=ms and T ¼ 100 ms, DT=L2 ¼ 4). The solid line is
the Fourier transform of the pore space function; the dashed
line is the signal calculated in the Gaussian phase approximation.
A slow transition from diffusion Gaussian phase approximation
to imaging type behavior (solid line) can be observed. The
measured signal for short �2 does not coincide exactly with
the Fourier transform for large q values; however, this is the case
for longer diffusion times (data not shown).
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Figure 2 visually demonstrates the different level of
structural information that can be obtained from current
standard techniques [Figs. 2(a) and 2(b)] and from the
here introduced asymmetric temporal gradient profiles
[Figs. 2(c) and 2(d)]. While the triangular structure is
lost in Figs. 2(a) and 2(b), it can clearly be observed in
Figs. 2(c) and 2(d).

Experimentally, the proposed technique is especially
favorable if a structure consisting of many separated closed
pores is to be investigated. Then, the image of an average
pore can be measured, where the centers of mass of all
pores are shifted to the origin of that image. In practice,
disturbing effects like magnetic field inhomogeneities
[6,25,26], pulsation artifacts [27,28], eddy currents [29],
or concomitant fields [30] must be handled by appropriate
sequence techniques, but these effects are usually manage-
able in NMR diffusion experiments and in NMR imaging.
The advantage of the average pore imaging approach is
that it allows a much higher signal-to-noise ratio than
available in classical NMR imaging, since the signal is
not distributed over the whole sample. Moreover, it is
possible to restrict the field of view to the length of the
average pore.

In conclusion, we show that the pore space function of a
single closed domain can be obtained using a minimal but
ingenious modification of current NMR diffusion tech-
niques. By this modification, it becomes possible to mea-
sure the phased spectrum instead of the power spectrum of
the structure of interest, which is a problem widely present
in other areas of physics, for example, in x-ray, electron,
and neutron scattering experiments. Finally, the ‘‘shape of
the drum’’ is visible and the long-standing question of
whether diffusion NMR can exactly resolve boundaries
restricting the diffusion process is answered positively.

We thank Wolfgang Bauer, Sherryl Sundell, and
Andreas Lemke for helpful discussions and careful reading
of the manuscript.
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