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In this Letter we show that living cells can multiplex biochemical signals, i.e., transmit multiple signals

through the same signaling pathway simultaneously, and yet respond to them very specifically. We

demonstrate how two binary input signals can be encoded in the concentration of a common signaling

protein, which is then decoded such that each of the two output signals provides reliable information about

one corresponding input. Under biologically relevant conditions the network can reach the maximum

amount of information that can be transmitted, which is 2 bits.
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Cells continually have to respond to a myriad of signals.
One strategy for transmitting distinct stimuli is to use
distinct signal transduction networks. It is, however, in-
creasingly recognized that components are often shared
between pathways [1]. Moreover, cells can transmit differ-
ent signals through one and the same pathway, and yet
respond to them specifically. In rat cells, for instance,
neuronal growth factor and epidermal growth factor stimuli
are transmitted through the same MAPK (mitogen-
activated protein kinase) pathway, yet give rise to different
cell fates, differentiation and proliferation, respectively
[2]. These observations suggest that cells are able to
transmit multiple messages through the same signal trans-
duction network, just as many telephone calls can be trans-
mitted via a single wire. Indeed, the intriguing question
arises whether biochemical networks, like electronic cir-
cuits, can multiplex signals: can multiple input signals be
combined (encoded) simultaneously in the dynamics of a
common signaling pathway, and then decoded such that
cells can respond specifically to each signal (see Fig. 1)?

An open question in biology is how cells transduce
multiple signals via pathways that share components, since
sharing components may lead to unwanted cross talk
between the different signals. In recent years, several
mechanisms for ensuring signaling specificity have been
proposed. One is spatial insulation, where the shared com-
ponents are incorporated into distinct macromolecular
complexes on scaffold proteins [1,3], leading effectively
to independent communication channels for the transmis-
sion of the respective signals. Other proposals are based on
the temporal dynamics of the system, such as cross-
pathway inhibition [4] and kinetic insulation [5]. With
these mechanisms the system cannot be decomposed
into independent pathways for the transmission of the

respective signals. Yet, these studies suggest that multiple
messages cannot be transmitted simultaneously because
one pathway tends to dominate the response. Here we
demonstrate that cells can truly multiplex signals: we
show that they can transmit at least two signals simulta-
neously through a common pathway, and yet respond
specifically to each of them.
Cells employ a number of coding strategies for trans-

ducing signals, such as encoding stimuli in the temporal
dynamics, like the duration [2] or frequency [6], of an
intracellular signal. In principle, any coding strategy could
be used to multiplex signals. Here, we consider what is
arguably the simplest and most generic coding strategy
cells could choose, namely, one in which the signals are
encoded in the concentrations of the signaling proteins. We
will call this strategy AM multiplexing.

FIG. 1 (color online). (a) Biochemical multiplexing: N differ-
ent signals are encoded in a common pathway V , and then
decoded such that each output species Xi responds to the
corresponding input Si. (b) Multiplexing is a mapping problem.
The states of two inputs S1 and S2 are mapped onto the
concentration of V , which is then mapped onto states of the
output species X1 and X2; we require that the two lowest
(highest) levels of Xi correspond to the lowest (highest) level
of Si. The dashed arrow denotes a mapping that violates this
requirement; levels of V and Xi are colored according to input
pattern s ¼ ðs1; s2Þ. (c) The 3 distinct mappings of s to v; in
panel (b) mapping C is shown.
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We will consider the biochemical network shown in
Fig. 1(a). It consists of N input species S1; . . . ;SN with
copy numbers S1; . . . ; SN , a common signal transduction
pathway V , and N output species X1; . . . ;XN . The copy
number of each input species Si can be in one of K states,
si ¼ 0; . . . ; K � 1, which are labeled in order of increasing

copy number, Sð0Þi < Sð1Þi < � � �< SðK�1Þ
i . The input pattern

is denoted by the vector s ¼ ðs1; . . . ; sNÞ. Similarly, the
copy number of each output species Xi can be in one of L

states XðxiÞ
i , with xi ¼ 0; . . . ; L� 1, ordered by increasing

copy number, and the output pattern is denoted by the vector
x ¼ ðx0; . . . ; xNÞ. A necessary condition for multiplexing is
that the state space ofV is large enough that it is possible to
encode the total number of input patterns, KN, inV .

We imagine that the N input signals are independent,
and that the signal transduction network V replaces N
independent signaling pathways. We therefore require that
Xi should provide reliable information about the state si,
but not necessarily about sj�i; the N different input signals

s simply have to be transduced to x, not necessarily inte-
grated. In general, however, the state xi will be a function
of the states of all the input species: xi ¼ fðsÞ. This reflects
the fact that inevitably there is cross talk between the
different signals because they are transmitted via the
same pathway. However, this cross talk is not detrimental
as long as it does not compromise the cell’s ability to infer
from xi what si was.

Another key point is that, while the precisemapping from
s to x may not be critical for the amount of information
transmitted per se, this is likely to be important for whether
or not this information can be exploited. Let us imagine that
the system contains three input species, say, three sugars,
each of which is either present or absent, si ¼ 0 or 1; let us
further assume that X1 is an enzyme needed to consume
sugar Si. With 8 input patterns Xi can, in the absence of
noise, take 8 values, identified as states xi ¼ 0; . . . ; 7. Now,
it seems natural to demand that when the sugar Si is absent
(si ¼ 0), the copy number of enzymeXi is low, whilewhen
Si is present, the copy number ofXi is high; this means that
the four lowest levels of Xi (xi ¼ 0; 1; 2; 3) should corre-
spond to si ¼ 0, while the four highest levels of Xi should
correspond to si ¼ 1.We therefore require that themapping
from s to x is such that the output states fxig corresponding
to input si ¼ j are grouped into sets that are contiguous and
either increase or decrease monotonically with j, for each
signal i. This leads to a monotonic input-output relation
between Si and Xi for each i. We call this requirement the
multiplexing requirement.

In the rest of the Letter, we make these ideas concrete for
a network with two input species, S1 and S2, each of which
has either a low (si ¼ 0) or a high concentration (si ¼ 1),
and the shared pathway consists of only one species, V .
Multiplexing requires that, in the absence of noise, the four
input patterns s can be mapped onto four distinct states of

V, VðvÞ with v ¼ 0; . . . ; 3, again labeled in order of in-
creasing copy number. These four levels of V lead to four

states for each of the two output species X1 and X2

[Fig. 1(b)]. As explained above, we require that we can
group these four states into two sets, called low and high,
such that the low set, containing xi ¼ 0; 1, corresponds to
si ¼ 0 and the high set, containing xi ¼ 2; 3, corresponds
to si ¼ 1 (or vice versa, leading to an inverse input-output
relation). We note that there exist different ways of map-
ping s to v, but not all of these mappings can necessarily be
decoded into x in a manner that satisfies the multiplexing
requirement. We therefore first address the question of
which combinations of mapping from s to v and decoding
from v to x fulfill the multiplexing requirement, and then
we will discuss what encoding mechanisms actually allow
for the required mapping from s to v.
Because of the symmetry in the problem, there are three

distinct ways of mapping the four input patterns s to v
[Fig. 1(c)]. To determine whether there exists a scheme for
decoding the signals from v to x that satisfies the multi-
plexing requirement, we examine for each mapping all
possible network topologies between V , X1, and X2,
except those that involve autoregulation or mutual regula-
tion since these may lead to bistability. In particular, we
allow for activation and repression of X1 and X2 by V ,
and for activation and repression of X2 by X1, leading to
feedforward loops, a common motif in signal transduction
pathways and gene networks [7]. In the deterministic
mean-field limit the steady-state values of X1 and X2 are
thus given by

X1 ¼ k1fðV;K�; n�Þ=�; (1)

X2 ¼ k2fðV;K�; n�Þ � fðX1;K�; n�Þ=�; (2)

where k is the maximum activation or production rate,� is
the degradation or deactivation rate, and each regulation
function is either an activating or repressing Hill function,
fðV;K; nÞ ¼ Vn=ðVn þ KnÞ or fðV;K; nÞ ¼ Kn=ðVn þ
KnÞ. The multiplication in Eq. (2) indicates that we assume
that at X2, X1 and V are integrated according to AND logic
[7]. To explore which architectures allow for multiplexing,
we performed extensive sampling of the space of parame-
ters k1, k2,K�, n�,K�, n�,K�, n� for each of the mappings

in Fig. 1(c).
Only for mapping C do we find decoding schemes that

satisfy the multiplexing requirement for realistic parameter
values. Interestingly, all valid decoding networks are inco-
herent feedforward loops [7]. Figure 2 illustrates the prin-
ciple for one such motif. X1ðVÞ is a simple activation curve
with activation threshold K�. In contrast, X2ðVÞ starts low
and rises around K�, but then decreases again due to

repression by X1. This nonmonotonicity, which is a result
of the incoherent character of the feedforward loop, is
critical since this makes it possible to swap the order of
the states corresponding to s ¼ ð1; 1Þ and ð1; 0Þ in the
mapping from v to x2. For sharp regulation functions, this

yields the intuitive requirement that Vð0Þ <K� < Vð1Þ and
Xð2Þ
1 <K� < Xð3Þ

1 .We stress, however, that n� and n� do not
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have to be large (they can be as small as unity), and thenK�

andK� can even fall outside these ranges. In order for X1 to

be able to repress X2 at X
ð3Þ
1 but not Xð2Þ

1 , X1 should not be

saturated at Vð2Þ; this means that K� * Vð2Þ and n� should
not become so large that X1ðVÞ becomes two-valued. These
mild constraints indicate that this is a robust decoding
scheme that can be implemented for a wide range of pa-
rameter combinations.

We can now also understand why mappings A and B are
difficult to decode: they would require an input-output
relation between X2 and V that rises more than once.
This is difficult to achieve in a feedforward loop without
mutual repression or activation.

The above analysis shows that it is possible to decode
multiple signals simultaneously, provided that the input s
can be encoded in V according to mapping C. The next
question is how this mapping, which corresponds to par-
ticular input-output relation VðS1; S2Þ, can be generated.
Multiplexing is most beneficial when the input signals are
multiplexed at the beginning of signal transmission. We
therefore consider whether two input signals can be multi-
plexed at the level of a single proteinV , which could be an
enzyme or a receptor at the very beginning of a signaling
cascade. We consider a canonical motif where S1 and S2

bind competitively to V , which can exist in either an
active conformational state A or an inactive state I
[Fig. 3(a)]. In equilibrium the mean number of active V
molecules will be

VðS1; S2Þ ¼ Vmaxð1þ qA1 þ qA2 Þ
1þ qA1 þ qA2 þ e�E0ð1þ qI1 þ qI2Þ

; (3)

where Vmax is the total number of V molecules, �E0 ¼
EA
0 � EI

0 is the free-energy difference between the active

and inactive states of V in the absence of ligand binding,

and qI;Ai ¼ Si=K
I;A
i with KI

i and KA
i the dissociation con-

stants for the binding of Si to inactive and active V ,

respectively. We find that a scheme where S1 activates
V more strongly than S2, giving energy levels as in
Fig. 3(b), generates the required VðS1; S2Þ [Fig. 3(c)];
competition between the two ligands reduces the probabil-
ity of S1 binding the receptor when S2 is present, ensuring

that VðSð0Þ1 ; Sð1Þ2 Þ<VðSð1Þ1 ; Sð1Þ2 Þ< VðSð1Þ1 ; Sð0Þ2 Þ. In the limits

Sð0Þi � KI;A
i � Sð1Þi a sufficient condition for this ordering

is 1>KA
2 =K

I
2 >KA

1 =K
I
1. Clearly, therefore, the required

encoding VðS1; S2Þ could be implemented at the level of a
single signaling protein V .
The analysis above shows that in principle biochemical

networks can multiplex signals in the mean-field, determi-
nistic limit. However, there remains the question of
whether signals can be multiplexed reliably in the presence
of inevitable biochemical noise. To address this, we esti-
mate a lower bound on the information about two binary
signals S1 and S2 that are transmitted through the network
studied above [Eqs. (1)–(3)]. We define the total informa-
tion I � IðS1; X1Þ þ IðS2; X2Þ as the sum of the mutual
information for each of the individual signals [8]. Note
that in the presence of noise Xi is not limited to 4 states but
can in principle take any value. This definition of Imakes it
straightforward to directly compare the performance of this
network with that of two independent pathways. If each of
the two input states for each Si is equally likely, then the
maximum value of IðSi; XiÞ is 1 bit for each signal i; the
maximum value of I is thus 2 bits.
To maximize the lower bound on I we optimize the

network parameters using a simulated-annealing algo-
rithm. We fix the deactivation rate of X1 and X2 to be
� ¼ 1 s�1 and set n ¼ n� ¼ n� ¼ n� ¼ 2; the results are

insensitive to the precise value of n for 1 � n � 4. We set
the maximum value of each Xi to be X

max; this specifies the
activation rates k1 and k2. We optimize the remaining
decoding parameters K�, K�, and K� over the range

½0; Vmax� or ½0; Xmax� as appropriate, and the encoding

parameters qji and �E over the range ½10�3; 103� and
½�10kBT; 10kBT�, respectively. Ligand binding is assumed
to be fast compared to receptor activity switching; the rate
of switching of V from the active to the inactive state
is fixed at 1 s�1, and the switching rate in the reverse

FIG. 2 (color online). Decoding V using an incoherent feedfor-
ward loop. (a) Network architecture. (b) The values of V corre-
sponding to the four input patterns s for mappingC [see Fig. 1(c)],
with thresholds K�, K�, K� [see Eqs. (1) and (2)]. (c) X1ðVÞ.
(d) X2ðVÞ. The nonmonotonicity of X2ðVÞ swaps the states cor-
responding to ð1; 1Þ and ð1; 0Þ in the mapping from v to x2.

FIG. 3 (color online). (a) An encoding scheme where two
ligands S1 and S2 competitively bind to a protein V , which
can be in an active state A or an inactive state I. (b) Energy levels
of V in the active or inactive state with no ligand, ligand S1, or
ligand S2 bound; e

�EI
i � Si=K

I
i ; e

�EA
i � e��E0Si=K

A
i . (c) Input-

output relation VðS1; S2Þ corresponding to the energy levels
in (b), yielding mapping C [Fig. 1(c)]; symbols j, m, d, .
correspond to states in Fig. 2.
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direction then follows from detailed balance given Eq. (3).
For each parameter set we compute the mutual information
using the linear-noise approximation [8,9]. Its accuracy
was verified by performing Gillespie simulations of the
optimized networks [10].

Using this procedure we compute I as a function of Vmax

and Xmax, which determine the intrinsic noise in the encod-
ing and decoding processes. Figure 4 shows that below a
threshold copy number Vmax

c � 10 the total information is
low regardless of Xmax because four distinct states of V
cannot be generated. Once Vmax becomes sufficiently large
that the four encoded signals are well separated, I saturates
at a value determined by the level of noise in the production
and decay of Xi. For large X

max the information I reaches
2 bits, thus matching the performance of two independent
channels. Importantly, I reaches 2 bits for Vmax � Xmax �
500, which is well within the range of typical protein copy
numbers inside living cells. This shows that biochemical
networks can multiplex two signals reliably at biologically
relevant noise levels.

In summary, our results suggest that cells can transmit at
least two binary signals through one and the same pathway,
and yet respond specifically and reliably to each of them.
The proposed mechanism for biochemical multiplexing is
based on swapping the order of states during the encoding
and decoding steps. It is clear that the principle is generic,
and could be implemented in any biochemical network that
uses an incoherent feedforward loop [7]. Indeed, the archi-
tecture of a number of well-studied systems resembles that
of the system studied here. It is well known that G-protein
coupled receptors (GPCRs) can be stimulated by many
different ligands, yet give rise to different cell fates, a
phenomenon referred to as ‘‘multiplicity’’ [11]. A GPCR
activates two G proteins, G� and G��. Of particular
interest is the system where G�q activates RhoGef63

[12], leading to cytoskeletal remodeling, while G�� acti-
vates PLC� [13], ultimately controlling cell proliferation.
Interestingly, PLC� binds not only G��, but also G�q,

thereby inhibiting the activation of RhoGef by G� [12].
Hence, we have a scheme where one protein V (the
GPCR) activates two proteins X1 (RhoGef63) and X2

(PLC�), whereby X2 effectively inhibits X1. This is
highly similar to our proposed multiplexing scheme, and
it is indeed tempting to speculate that multiplicity is
achieved via multiplexing. Secondly, Ras is a major hub
in cell signaling: it is activated by many cellular stimuli,
including growth factors, differentiation factors and cell
survival factors. Activation of Ras leads to the activation of
the Raf-Mek-Erk MAPK pathway, ultimately leading to
differentiation or proliferation, and also via PI3K to the
activation of Akt and hence the mTOR pathway, control-
ling many processes such as metabolism. Importantly, Akt
also deactivates Raf [14], generating a Ras (V )-Raf (X1 )-
Akt (X2) incoherent feedforward loop. Finally, CREB, a
major transcription factor in neuronal cells, is activated by
many different stimuli, and, in turn, regulates many differ-
ent target genes, some of which include incoherent feed-
forward loops [15]. It will be interesting to test whether
these systems employ biochemical multiplexing when they
are stimulated by two signals simultaneously.
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