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A new phase transition is observed experimentally in a dry granular gas subject to vertical vibration

between two horizontal plates. Molecular dynamics simulations of this system allow us to investigate

the observed phase separation in detail. We find a high-density, low temperature liquid, coexisting with a

low-density, high temperature gas moving coherently. The importance of the coherent motion for phase

separation is investigated using frequency modulation.
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Finding the general principles determining the formation
of collective steady states in systems far from thermal equi-
librium can be regarded as one of the fundamental unsolved
problems of statistical physics. In this context, driven granu-
lar gases have received growing interest in recent years as
model systems for complex collective behavior [1]. Phase-
transition-like phenomena have been found in many granular
systems subject to vibration, both experimentally and in
simulations [2–11]. Vertically vibrated confined monolayers
exhibit distinct solid- and fluidlike phases which are analo-
gous to those of an equilibrium hard-sphere gas [3]. Solid-
liquid coexistence of granular matter has also been observed
experimentally in a similar geometry [4,5]. These experi-
ments show that phase separation arises due to spinodal
decomposition, and have been explained using simulations
involving thermalized boundary conditions and deeper beds
[6,7]. However, recent simulations of confined monolayers
suggest that phase separation does not occur if the system is
driven by random forcing [8]. A detailed understanding of the
role played by vibration and confinement on granular phase
separation is still lacking.

In this Letter, we report on a novel liquid-gas phase
separation phenomenon in a vertically vibrated, confined,
dilute, granular system. We have carried out experiments
using a cell containing glass spheres which we observe to
phase separate under vertical vibration as the amplitude is
increased beyond a threshold. The phase diagram has been
determined as a function of volume filling fraction and
driving amplitude. To understand this behavior in some
detail we have carried out simulations using a simplified
model which is able to reproduce the experimental results.
The simulations suggest that phase separation is driven by
spinodal decomposition; the spinodal arises from the sud-
den crossover from a thermalized liquid to a coherently
moving gas. This behavior is clearly distinct from previ-
ously known separation mechanisms, such as clustering
induced by inelastic collisions [12] or the presence of
cohesive forces between grains [9,10].

Our experimental apparatus consists of a cell containing
glass spheres which can be vibrated vertically using an

electromagnetic shaker. The cell is constructed out of a
lower, anodized aluminum plate on top of which there is
attached a square aluminum frame (interior side 13 cm)
and an upper, square, glass plate. The gap between the
bottom and top plates could be varied by changing the
metallic frame: we used gaps, h, of 0.5 cm, 0.75 cm and
1 cm. The particles used in the experiments were slightly
polydisperse spherical glass spheres (Ballotini) of mean
diameter d ¼ 610 �m. The cell was rigidly attached to an
electromagnetic shaker (Ling-Dynamics V406) and driven
by a sinusoidal signal from a function generator. The
vertical motion was monitored using a capacitance canti-
lever accelerometer. Experiments were carried out over the
frequency range f ¼ 23 to 65 Hz. The dimensionless
driving acceleration � ¼ Að2�fÞ2=g was varied between
1 and 18, where A is the amplitude of the driving and g is
the acceleration due to gravity. Care was taken to ensure
that the cell was levelled prior to each experimental run.
The construction of the cell and the controlled environment
in the laboratory minimized charging effects of the parti-
cles. The particles and the cell were cleaned and dried in an
oven, and a certain volume of particles was then poured
into the cell. We define the volume filling fraction, ��, as
the volume of particles in the cell divided by the volume of
the cell. The cell was then closed and vibrated at a fixed
frequency and the amplitude was varied.
Figure 1 shows typical snapshots of the system for

different values of A. As A increases, the initial homoge-
neous state separates into a low-density (dark) and high-
density (bright) region. For each A the pattern is stationary
apart from small fluctuations. For higher A the particles
eventually spread out homogeneously. The appearance of
two-phase coexistence is detected by visual inspection, and
the corresponding amplitude was reproducible within ex-
perimental error. No crystalline order in the high density
phase was visible. We found that the amplitude at which
phase separation first occurred was independent of vibra-
tion frequency within the range investigated, 23 Hz< f <
65 Hz (cf. inset of Fig. 2). We also note that a small amount
of hysteresis was found for some of the phase boundaries.
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When the system phase separates the particles in the dilute
region always hit the top plate of the cell during their
motion.

Figure 2 shows the experimental phase diagram. For a
given gap between the bottom and top plates, the condi-
tions for phase separation depend on both the amplitude
and the filling fraction, but are independent of frequency.
Current theoretical understanding of phase separation in
vibrated granular media is generally based on systems
driven by thermalized boundary conditions with zero am-
plitude [6,13,14]. In order to gain an understanding of our
system we have to carry out simulations which include the
plate motion explicitly.

We used event-driven simulations to model the motion
of grains enclosed in a geometry similar to that of the
experimental cell. We assume that the particles are hard
spheres of mass m and mean diameter d, and slightly
polydisperse (uniformly distributed with a standard devia-
tion of 6% of d, similar to the experiment). They are
confined by an upper and lower plate with a gap height
of 16d and a side of 210d, and move in three dimensions
under the influence of gravity. The ratio h=d is similar to
the experiment corresponding to the black curve in Fig. 2.
Collisions between particles dissipate energy with a
velocity-independent coefficient of restitution which was
taken to be 0.9 in all simulations presented here. Collisions
with the top and bottom plate of the cell are assumed to be
elastic. To drive the system, the top and bottom plates are
moving sinusoidally in the vertical direction as in the
experiment, while the system is assumed to be periodic
in the horizontal directions. We define the granular tem-
perature, T, to be the mean kinetic energy per particle

determined from the horizontal components of the velocity.
Two-phase coexistence is identified by a significant differ-
ence in the maximum and minimum of the time-averaged
local densities.
Figure 3 shows the phase diagram obtained from simu-

lations. For low driving amplitudes the system remains
homogeneous; for intermediate values of A and �� there
is a two-phase coexistence (orange shaded region); for
large A the system becomes homogeneous again. The
simulation predicts a similar crescent-shaped coexistence
region to that observed experimentally. Some simulations
were carried out for different gap heights; the correspond-
ing variation in the phase diagram was qualitatively similar
to that found in experiment. We attribute quantitative
differences to other dissipation channels, such as inelastic
collisions with the base, sliding friction and rotational
degrees of freedom, which have been neglected in the
simulation. Simulations also do not include air effects;
we have carried out experiments down to an air pressure
of 0.03 Torr and still observed the phase separation.
We also note that even though the particles are slightly
polydisperse no size segregation is observed.
As in experiment, the phase diagram is found to be

independent of frequency. As a further test, we have carried
out simulations in which g was set to zero. No significant
change was found in the simulation results. The frequency
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FIG. 2. Experimental phase diagram in the space of the di-
mensionless amplitude, A=d, and volume filling fraction, ��, for
three gap heights, h: 0.5 cm (dotted), 0.75 cm (dashed) and
1.0 cm (solid). The lines show the approximate boundary of the
coexistence region obtained by increasing (triangle up) or de-
creasing (triangle down) the amplitude at fixed filling fraction.
We only show the hysteresis for the system with the largest gap.
The upper horizontal axis shows the volume filling fraction
expressed as the mean number of particle layers, assuming a
hexagonal close packing, for h ¼ 1:0 cm. The inset shows the
appearance and disappearance amplitude for phase separation as
a function of frequency at a filling fraction of �� ¼ 0:035. For
large enough frequencies it can be seen that the appearance and
disappearance of phase separation is almost independent of
frequency.

FIG. 1. Snapshots showing the cell containing the glass
spheres (bright) viewed from above. The volume filling fraction
occupied by the particles was �� ¼ 0:059. The cell was vibrated
at f ¼ 45 Hz and from top left to bottom right the maximum
acceleration � is 5.9, 7.5, 9.0, 10.6, 12.0, and 13.7 respectively;
the corresponding amplitudes, A=d, are 1.19, 1.51, 1.81, 2.13,
2.41, and 2.76. In the first snapshot (top left) the particles are
distributed in the horizontal plane homogeneously throughout
the cell. As A is increased a dilute region suddenly appears at the
top left corner in the system (top middle). This dilute region
expands as A is increased further (top right, bottom left and
bottom middle). Eventually at large enough A the system returns
to a homogeneous state (bottom right).

PRL 107, 048002 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JULY 2011

048002-2



only sets the time scale of the dynamics and does not
influence the steady state configuration. As a result, the
phase diagram is independent of frequency.

The snapshot in Fig. 3 shows two-phase coexistence in a
simulation. In the phase-separated state the interface be-
tween the phases is either circular or forms a stripe (due
to the presence of periodic boundary conditions); these
configurations suggest that the interface has an effective
surface tension, even though there is no attractive force
between particles. Some simulations were run with solid
reflective sidewalls and no significant change of the phase
diagram was found. Simulations also allow us to measure
the pair-correlation function. In the dilute phase the pair-
correlation function decays monotonically, whereas in the
dense phase short-range order is visible. This behavior is
reminiscent of a classical gas and liquid; therefore we use
the same terminology here. In neither phases is there any
evidence of long-range ordering.

In the phase-separated state, we can measure the local
density � in the two different phases. These are shown in
Fig. 3 as filled circles. The locus of the circles defines a
‘‘binodal line’’ surrounding the coexistence region. In or-
der to understand the mechanism responsible for the phase

separation, we performed simulations in a system with a
small horizontal area. The small box allows for the mea-
surement of the horizontal component of the pressure
tensor, p, under conditions which would otherwise give
rise to phase separation in a large system [6,15]. The inset
of Fig. 3 shows p as a function of �� for three different
amplitudes in the small system. From such simulations the
range of values of A=d and �� where we find a negative
compressibility, the ‘‘spinodal region’’, can be determined
and is given by the triangles in the main panel of Fig. 3.
It has been suggested [6] that a spinodal can arise if T

decays sufficiently strongly with filling fraction. In the
inset to Fig. 4 we show the mean value of T as function
of �� for three different amplitudes. For the amplitudes
shown, phase separation is only present for the intermedi-
ate value A=d ¼ 1:5; phase separation occurs for the range
of �� for which T decreases rapidly. What is the cause of
this rapid decay?
The main panel of Fig. 4 shows the dependence of

granular temperature on amplitude for three different
volume filling fractions in a small system which does not
phase separate. The amplitude dependence appears to ex-
hibit two distinct regimes with a rapid rise (kink) in granu-
lar temperature between them. As �� is increased the shift
of the kink to higher amplitudes results in the rapid decay
of T with �� shown in the inset. For example, for an
amplitude for which phase separation is observed in the
large system, A=d ¼ 1:5 (dotted line), by increasing �� we
move from one regime to the other with a sudden decrease
in temperature. The lower and upper volume filling
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FIG. 4. Granular temperature T as a function of amplitude A=d
for three different volume filling fractions �� for a small system
which does not phase separate. The curves exhibit two distinct
regimes and a rapid rise in T between them. The black circles
show the temperature of the coexisting phases obtained in the
large system. They lie on different branches of the TðAÞ curves
which correspond to different regimes. The inset shows T as a
function of �� for three different amplitudes. Only for the
intermediate value, A=d ¼ 1:5, shown does phase separation
occur due to the presence of the rapid drop in T with ��. The
circles show the coexisting values of the local temperature T and
the local density �. The amplitude A=d ¼ 1:5 is marked in the
main panel as a dotted vertical line.
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FIG. 3 (color online). Phase diagram in the space of A=d and
�� obtained from simulations of the large system. The orange
shaded region shows where phase separation occurs, while out-
side that region the system remains homogeneous within the
time scales simulated. For systems which phase separate, the
locally coexisting densities � are given as black circles. They
form a ‘‘binodal line’’. The black triangles, confine the region of
negative compressibility (the spinodal region) obtained by the
simulations of the small system. The inset shows the pressure, p,
as a function of �� from simulations of a small system for three
different amplitudes. The intermediate amplitude shows a nega-
tive compressibility for a range of values of ��. The snapshot
shows a phase-separated system for A=d ¼ 1:5 and �� ¼ 0:085,
where the color indicates high (red) and low (blue) kinetic
energy of each particle and the shadow underneath is a measure
of the local volume filling fraction, where the dense phase
appears darker. The coexisting temperatures can be found in
the inset of Fig. 4 as black circles.
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fractions shown were chosen to be the coexisting values for
this amplitude in the large system. The figure also shows
the temperatures of the two coexisting phases extracted
from simulations of the large system (circles). It can be
seen that these circles lie on branches of the curves corre-
sponding to the two different regimes.

In simulations we can study in detail the dynamics of the
grains, for a given amplitude, in the two different regimes
at high and low volume filling fractions. In both regimes
energy is injected through collisions with the plates and
dissipated by collisions in the bulk. The dense phase looks
like a thermalized liquid for which the granular tempera-
ture scales as A2 which is approximately recovered in
Fig. 4 for small amplitudes. The injected energy is quickly
dissipated within the bulk due to the large volume filling
fraction. During each cycle shock waves propagate away
from the lower and upper plates into the bulk increasing the
number of dissipative collisions [16]. In contrast, in the
dilute phase a statistically significant number of particles
can propagate from one plate to the other without under-
going collisions. The motion of these particles becomes
synchronized with the driving and energy is picked up
more efficiently due to this resonance [17]. The dissipation
is reduced by two mechanisms: there are fewer particles
than in the dense phase and the coherent motion reduces
the relative velocity of particles undergoing collisions.
As a result the temperature of this phase is significantly
higher than that in the dense phase under the same driving
conditions. It is these two types of dynamical behavior
which give rise to the different regimes shown in Fig. 4.

Finally, as a test of the importance of coherent motion
for this form of phase separation we have carried out
experiments in which the sinusoidal waveform was fre-
quency modulated. As the phase diagram is independent of
the driving frequency, one might expect that such a fre-
quency variation should not strongly influence the separa-
tion because the amplitude can be kept fixed. We have used
a driving waveform given by A sin½2�ftþ ð�f=fmÞ�
sinð2�fmtÞ�, where �f is the peak deviation and fm is

the modulation frequency. By varying fm and �f we can

find conditions under which the phase separation is sup-
pressed. For example, if we choose fm ¼ f=2 the effect of
varying �f is to shorten and lengthen every alternate

driving cycle by a small fixed amount. For f ¼ 40 Hz,
fm ¼ 20 Hz, A=d ¼ 2:34, �� ¼ 0:099 and h ¼ 1 cm
phase separation is switched off for �f> ¼ 12:3 Hz. We

have also checked that for sufficiently large frequency
modulation we do not observe phase separation for the
range of driving amplitudes and volume filling fractions
shown in Fig. 2. These findings indicate that if the resonant
motion of a single particle is successfully suppressed the
collective coherent motion is destroyed and phase separa-
tion disappears.

We have investigated a granular system which exhibits a
novel form of phase separation. The great virtue of our
system is that one can sweep through the phase diagram
simply by changing the driving amplitude. This simplicity
opens up the possibility of investigating critical point
phenomena, the corresponding critical exponents and the
dynamics of spinodal decomposition, all in a nonequilib-
rium setting. Further study of this system may lead to new
insights into the fundamentals of nonequilibrium statistical
physics.
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