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We consider a long superconductor-ferromagnet-superconductor junction with one spin-active region.

It is shown that an odd number of Cooper pairs cannot have a long-range propagation when there is only

one spin-active region. When the temperature is much lower than the Thouless energy, the coherent

transport of two Cooper pairs becomes the dominant process and the superharmonic current-phase relation

is obtained (I / sin2�).
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The interplay between superconducting and ferromag-
netic ordering has been the subject of intensive theoretical
and experimental research [1–9]. It has been predicted
that the hybrid systems containing superconductors (S)
and ferromagnets (F) allow the realization of Josephson
� junctions, I / sinð�þ �Þ [1]. The spectral decomposi-
tion of the Josephson current-phase relation (CPR) gives
I ¼ I1 sin�þ I2 sin2� . . . . At the transition between the 0
and the � phases, I1 vanishes, and it is possible to obtain
dominant second harmonic (I2) in the CPR. Unfortunately,
the 0-� coexistence is very sensitive to the temperature
changes and interface roughness [2].

The experimental realizations of � junctions remained
elusive for a long time; the breakthrough came with the
fabrication of weak ferromagnets [3]. Indeed, it has been
recognized that the proximity effect in a ferromagnet is
short-ranged. The electron and hole excitations acquire a
nonzero relative phase in the ferromagnet between the
scatterings from the two superconductor-ferromagnet
(SF) interfaces [1]; the different orbital modes acquire
different phases that add up destructively after summation.
A detailed analysis demonstrates that the proximity effect
in a superconductor-ferromagnet-superconductor (SFS)
junction is suppressed algebraically in the ballistic regime,
and exponentially in the diffusive one [4].

Quite recently, it was proposed that a SFS junction
with an inhomogeneous magnetization in the F layer can
generate a triplet pairing and can support a long-range
Josephson current [4]. Subsequent theoretical and experi-
mental research showed that in order to have dominant
triplet pairing a SFS junction with two spin-active regions
is required [5–8].

Motivation for this Letter is our previous numerical
calculation [10], where clean and moderately disordered
SFS junctions were considered (with a one spin-active
interface), and the dominant second harmonic was obtained.

In this work, we consider a long SFS junction in the
ballistic regime. Assuming the presence of a spin-active
region on only one SF interface, we show that only the
phase coherent transport of an even number of Cooper
pairs is not suppressed by the exchange field. In particular,

the dominant contribution to the Josephson current stems
from the transport of two Cooper pairs. As a consequence,
the two times smaller flux quantum is obtained, leading to
more sensitive quantum interferometers (SQUIDs) [11]
and the half-integer Shapiro steps that can be experimen-
tally observed [9]. Another interesting property is the
coexistence of integer and half-integer fluxoid configura-
tions in SQUIDs, corresponding to the minima of the
triple-well potential energy [11]; this can be potentially
useful for experimental study of the quantum superposition
of macroscopically distinct states [12]. Also, junctions
with a nonsinusoidal current-phase relation are shown to
be promising for realization of ‘‘silent’’ phase qubits [13].
Last but not least, this result enables robust realization of
so-called ’ junctions [14].
It should be stressed that in contrast to the case of the

0-� transition the discovered effect is very robust: it is
insensitive to a weak disorder [10], temperature changes,
and the interface roughness. Nevertheless, relatively trans-
parent interfaces are required in order to observe the effect.
Before we proceed with a quantitative analysis of the

aforesaid effect, let us first give a simple and intuitive
description. Note that when a SF interface is spin-active,
there are two possibilities for Andreev reflection: the nor-
mal Andreev reflection (the spin projections of an electron
and the reflected hole are opposite) and the anomalous
Andreev reflection (an electron and the reflected hole
have the same spin projections) [15]. We consider sepa-
rately the phase coherent transport of one (I1) and two (I2)
Cooper pairs. The transport of a single Cooper pair is
suppressed by the exchange field because the electron
and the Andreev reflected hole have opposite spin projec-
tions (see Fig. 1). On the other hand, the transport of two
Cooper pairs has a long-range contribution stemming from
two normal and two anomalous Andreev reflections.
We consider a simple model of a ballistic SFS junction

consisting of two conventional (s-wave) superconductors,
a uniform single-domain ferromagnet, and only one spin-
active region. Andreev reflection requires relatively trans-
parent SF interfaces; thus, for simplicity we assume them
to be fully transparent. The spin-active region consists of a
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ferromagnetic spacer layer with the magnetization noncol-
linear to that of the F layer.

The Josephson current is calculated using the scattering
approach [16]. The knowledge of scattering matrices (S
matrices) of both SF interfaces is sufficient to obtain the
Josephson current in the ballistic regime. Each of these
matrices relates the amplitudes of the excitations propagat-
ing towards the corresponding SF interface to the excita-
tion propagation away from it. There is no orbital channel
mixing in the ballistic regime, but only mixing of different
spin channels (due to the spin-active region) and the
particle-hole mixing (due to superconductors). Ergo, the
dimension of the S matrix is 4� 4—we write all matrices
in the Kronecker product of particle-hole and spin spaces.
The Josephson current is given by [16]

I ¼ � 2ekBT

@

d

d�

X1
n¼0

ln det½1�Rði!nÞR0ði!nÞ�; (1)

where R0 and R are S matrices of the two SF interfaces,
while the phases acquired upon propagation through the
F region are included in one of these matrices. !n ¼
ð2nþ 1Þ�kBT are the Matsubara frequencies and � is
the phase difference between the two superconductors.

In order to calculate the S matrix, one has to solve the
Bogoliubov–de Gennes equation for each SF interface.
Here we take a simpler approach and express the S matrix
(R) in terms of a S matrix of a SN interface [2,15], where
N stands for a normal-nonferromagnetic layer. By so
doing, we neglect the difference in the number of spin-up
and -down modes in the ferromagnet. This approximation
is also assumed in the quasiclassical approach and is
justified for a weak exchange field in the ferromagnet [17].

The S matrix of a transparent SN interface reads

RAð";�Þ ¼ �ð"Þ 0 i�2e
i�

�i�2e
�i� 0

� �
; (2)

where �ð"Þ ¼ e�i arccosð"=�Þ and �2 is the second Pauli
matrix. For the ferromagnetic spacer layer (spin-active
region), the S matrix is

SF ¼ 0 U
U 0

� �
; U ¼ eið�þ�m��Þ=2; (3)

where m ¼ ðsin� cosc ; sin� sinc ; cos�Þ is the magnetiza-
tion orientation in the ferromagnetic spacer layer. The
difference of the phase shifts of spin-up and spin-down
electrons upon propagating through the ferromagnetic
spacer layer is denoted by � ¼ �" � �#, while � ¼ �" þ
�#. Here the spin-up (spin-down) is defined with respect to

the magnetization axis in the F layer. These phases depend
on the orbital channel index 	, but for the sake of nota-
tional simplicity we have suppressed the index. We also
assume that the ferromagnetic spacer layer thickness is
much smaller than the superconducting coherence length
(L0 � 
S), so that the energy dependence of � and � can
be ignored. Combining these scattering matrices we obtain
the scattering matrix of the SF interface with the spin-
active region

R ð"Þ ¼ �ð"Þ 0 �r̂�hee
i�

r̂hee
�i� 0

� �
; (4)

with

r̂ he ¼ �ieic sin� sin� � cos�þ i cos� sin�
cos�þ i cos� sin� ie�ic sin� sin�

� �
:

(5)

For the SF interface without the spin-active region, we
also include the phases acquired in the F layer and obtain

R 0ð"Þ ¼ Tð"ÞRAð"; 0ÞTð"Þ; (6)

with T ¼ eidiag½k	;"ð"Þ;k	;#ð"Þ;�k	;"ð�"Þ;�k	;#ð�"Þ�L; k	;"# is the

longitudinal component of the wave vector in the orbital
mode	 (spin-up or -down), and L is the F layer thickness.
In order to perform the integration over orbital modes,

we put �	 ¼ Z0= cos�, where Z0 ¼ 2h0L0=ð@vFÞ; h0 is the
exchange energy in the spacer layer which is assumed to be
small (h0 � EF), and� is the angle between the excitation
velocity and the junction axis. Also, in the Andreev
approximation k	;"#ð"Þ ¼ ðkF � h=@vF þ "=@vFÞ= cos�,

where h is the exchange energy in the F layer (h � EF).
Setting L0 ¼ 0 (no spin-active layer) recovers the result
previously obtained from the quasiclassical approach [11],
where the following expression relates the scattering to the
quasiclassical approach (see also Ref. [18]):

X
�

g�ð�Þ � g�ð��Þ
2

¼ e2RN

i�@

d

d�
ln detð1�RR0Þ;

(7)

FIG. 1 (color online). The first two harmonics in the Josephson
current-phase relation. The first one (I1) consists of two normal
Andreev reflections from SF interfaces. The second one (I2) has
two contributions: the one with four normal Andreev reflections
(short-range), the other with two normal and two anomalous
Andreev reflections (long-range, total phase acquired in F layer
is zero). The solid (dotted) lines represent electron (hole) ex-
citations in the F layer. The red (vertical) arrows represent spin
projections, while the black (horizontal) arrows denote the
excitation velocity direction. The right SF boundary (hatched)
is spin-active.
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where RN is the normal resistance and g� is the normal
Green function in the ferromagnet [11].

In the general case—with one spin-active region—upon
inserting Eqs. (4) and (6) into Eq. (1) the formula for the
Josephson current is obtained. We introduce a new variable
u ¼ arcsinhð!=�Þ, and integrate over orbital modes

I ¼ 2�T

eRN

X
�;!n>0

Z �=2

0
d�sin�cos� Im tanh

�
u

þ �sinhu
Lþ L0

@vF cos�
þ i�

�

2
þ i

’

2

�
; (8)

with � ¼ arccosðRe½r#"hee�iZ= cos��Þ and Z ¼ 2hL=ð@vFÞ;
r#"he denotes the element (2,1) of the matrix in Eq. (5).

We now consider a long SFS junction, and show that
only even harmonics in the CPR are long-range. In this
case (L � 
S), the first term in the argument of the hyper-
bolic tangent (u) can be neglected. At zero temperature, the
summation over !n can be replaced by an integration; the
expression for the Josephson current reads

I ¼ 4@vF

eRNL

X1
k¼1

ð�1ÞkIk sinðk�Þ: (9)

In the last equation, the spectral weights Ik quantify the
contribution to the current coming from the phase coherent
transport of k Cooper pairs across the barrier

Ik ¼ �
Z 1

1

TkðRe½r#"hee�iZx�Þ=k
x4

dx; (10)

where Tk is the Chebyshev polynomial of the first kind
and x ¼ 1= cos�. We have used the identity Im tanhz ¼
2
P1

k¼1ð�1Þk Ime�2kz for obtaining Eqs. (9) and (10) [19].

In order to avoid cumbersome expressions, we concen-
trate on the case with mutually orthogonal magnetizations
in the F and the ferromagnetic spacer layer (� ¼ �=2).
Later we will show that all our conclusions are valid for

arbitrary (but not too small) �. Now, r#"he ¼ cosðZ0xÞ and the
expression for the spectral weights reads

Ik ¼
Z 1

1

dx

x4
Xbk=2c
n¼0

Xn
m¼0

ð�1Þnþmþ1

k

k

2n

 !
n

m

 !
½cosðZxÞ

� cosðZ0xÞ�k�2ðn�mÞ; (11)

where bxc denote the largest integer not greater than x.
We perform the integration in Eq. (11) by expanding the

integrand as a sum of cosines. When k is odd, every term
in that sum depends on Z; for a long SFS junction and
for a reasonably strong exchange energy (h >�), we have
Z � 1 and

R1
1 cosðZxÞ=x4dx ¼ � sinZ=ZþOð1=Z2Þ.

Hence, odd harmonics are suppressed by the factor 1=Z.
On the other hand, for even k we find terms that are
independent of Z (the exchange energy in the F layer).
Thus we write I2k ¼ ILR2k þOð1=ZÞ. The long-range com-

ponent of even harmonics (ILR2k ) is given by

ILR2k ¼
Z 1

1

dx

x4
Xk
n¼0

Xn
m¼0

ð�1Þnþmþ1

22ðk�nþmÞ
1

2k

2ðk� nþmÞ
k� nþm

 !

� 2k

2n

 !
n

m

 !
cosðZ0xÞ2ðk�nþmÞ: (12)

This result shows that even harmonics dominate in a long
junction. It should be noted that even harmonics can domi-
nate for any junction length if the parameters of the spin-
active region are chosen in such a way that normal Andreev

reflection vanishes on one SF interface (i.e., r#"he ¼ 0). This
can be directly seen from Eqs. (9) and (10).
Figure 2 shows the dependence of the first two long-

range harmonics (I2 and I4) on Z0. For large values of
Z0 both curves converge to the constant values— �I2 and
�I4, respectively. Hence, we see that for a certain range
of the ferromagnetic spacer layer parameters [1 �
L0h0=ð@vFÞ � h0=�] the Josephson current reads

I ¼ 4@vF

eRNL

X1
k¼1

�ILR2k sinð2k�Þ þO

�
@vF

hL
;
@vF

h0L0

�
; (13)

where �ILR2k are independent of the junction parameters

�ILR2k ¼ Xk
n¼0

Xn
m¼0

ð�1Þnþmþ1

24ðk�nþmÞ
1

6k

2ðk� nþmÞ
k� nþm

 !
2

� 2k

2n

 !
n

m

 !
: (14)

Equations (13) and (14) assert that for a long SFS junction
with one spin-active region, the long-range part of the
Josephson current depends only on the Thouless energy.
Consequently, the long-range part of the current is not
suppressed by fluctuations of the ferromagnetic barrier
thickness (interface roughness). The current-phase relation
is depicted in the inset of Fig. 3.

0 10 20
−0.1

0

0.1

FIG. 2. The long-range component of the second (thick solid
curve) and the fourth (thin solid curve) harmonic of the
Josephson current-phase relation. For Z0 � 1, both the curves
converge to constant values (dotted lines), �I2 and �I4.
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In the general case, when the value of Z0 is arbitrary (but
L0 � 
S), the supercurrent dependence on Z0 is given by
Eq. (12). Again, even harmonics are dominant. The free

energy of the Josephson junction is given by Fð�Þ /R�
0 Ið ~�Þd ~�; the ground state of the junction is degenerate:

the 0 and � states have the same energy. The degeneracy is
lifted only by algebraically small factors (	1=Z).

The dependence of the spectral weights on the misor-
ientation angle is depicted for three values of � in Fig. 3.
We observe that even harmonics dominate also for � <
�=2. As the relative angle between magnetizations ap-
proaches zero, the amplitudes of even harmonics lessen
and eventually the odd and even harmonics become com-
parable. Therefore, one can tune the ratio I2=I1 by chang-
ing the angle �, while the sign of I1 can be changed by
adjusting the thickness of the F layer [2]. This enables
robust realization of ’ junctions [14], contrary to previ-
ously discussed realizations with the 0-� transition.

At finite temperatures a new length scale appears—the
normal metal coherence length 
N ¼ @vF=ð2�TÞ. For high
temperatures, T � @vF=L ¼ ET (i.e., L � 
N), only the
first term (n ¼ 0) in the summation over Matsubara fre-
quencies contributes to the current given by Eq. (8). After
performing the integration over orbital modes, assuming
h � T, we obtain

I ¼ � 8�T

eRN

�
sinðZ� Z0Þ

Z
cos2

�

2
þ sinðZþ Z0Þ

Z
sin2

�

2

�

� �2

ð�T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2T2

p
Þ2 e

�L=
N sin�: (15)

We conclude that the first harmonic always dominates in
the high-temperature limit, because the higher harmonics

are suppressed by the factor e�k
N=L (k > 1) [20]; in this
case the supercurrent has only the short-range part [5].

In conclusion, we have shown that SFS junctions with
one and two spin-active SF interfaces are qualitatively
different. In the case of two spin-active interfaces, all
harmonics in the Josephson current-phase relation are
long-range (and the first one is dominant) [8], while in
the case of one spin-active interface, we find that only even
harmonics are long-range (and the second one is domi-
nant). Some repercussions of the discovered effect are
half-integer Shapiro steps [9], the coexistance of integer
and half-integer fluxoid SQUID configurations [11], and
robust realization of the ’ junctions [14].
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