
Origin for Ellipticity of High-Order Harmonics Generated in Atomic Gases and the
Sublaser-Cycle Evolution of Harmonic Polarization

V.V. Strelkov,1,* A.A. Gonoskov,2 I. A. Gonoskov,2 and M.Yu. Ryabikin2

1General Physics Institute of the Russian Academy of Sciences, 38 Vavilova st., Moscow 119991, Russia
2Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov st., Nizhny Novgorod 603950, Russia

(Received 2 March 2011; published 18 July 2011)

We investigate numerically and analytically the polarization properties of high-order harmonics

generated by an atom in intense elliptically polarized laser field. The offset angle of the harmonic

polarization ellipse can be well described with the semiclassic ‘‘simple-man’’ high-harmonic generation

model. The harmonic ellipticity itself, however, can be hardly understood within this model. We show that

this ellipticity originates from quantum-mechanical uncertainty of the electron motion. We develop a

theoretical approach describing this ellipticity and, more generally, the time evolution of the high-

harmonic polarization state within the laser cycle. The analytical results are verified with the exact

numerical solution; to make the comparison accurately, we develop a specific technique for separating the

contributions of quantum paths in the numerical calculation.
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The polarization properties of the high-order harmonics
(HH) generated in an intense laser field are actively studied
both experimentally [1–7] and theoretically [8–10]. These
studies show that the harmonics generated in elliptically-
polarized laser field are elliptically polarized, and the
polarization ellipse of the harmonic is rotated by a certain
angle with respect to that of the fundamental (the so-called
rotation angle). In addition to the general fundamental
interest, studies of high harmonic generation (HHG) in
an elliptically polarized field are important in the context
of an isolated attosecond pulse production with the ellip-
ticity gating technique [11,12], as well as the generation of
elliptically- or circularly polarized coherent XUV.

Many HHG features can be understood in the framework
of the well-known ‘‘simple-man’’ model [13,14]. It describes
HHG as a result of tunneling ionization of the atom by the
laser field, free electron motion in this field, and recombina-
tion accompanied by the XUV emission upon the return to
the parent ion. Thus, this model implies that the direction of
the HH field is identical with that of the momentum of the
electron coming back to the parent ion and generating XUV
photon. However, there is no clear explanation of the origin
of the nonzero ellipticity of harmonics generated from atoms.
The simple-man model predicts zero harmonic ellipticity,
which contradicts both the experimental results and those of
quantum-mechanical theories.

Note that the perturbation theory predicts a nonzero
ellipticity of lower harmonics; however, since HHG is a
strongly nonperturbative phenomenon, the results of the
perturbation theory [15] can hardly be applied even for a
qualitative understanding of the HH ellipticity. The
quantum-mechanical theories [8–10] of the process based
on the strong-field approximation allow calculation of the
ellipticity value. However, no qualitative explanation of the
ellipticity origin was suggested within these theories.

In this Letter, we propose the explanation of the origin of
the harmonic ellipticity. The explanation is given in terms
of the quantum-mechanical spreading of the electronic
wave packet after ionization, and of the features of the
classical electron trajectories. Simple equations describing
the harmonic ellipticity and the rotation angle are derived.
These equations are verified by comparison with the nu-
merical solution of the three-dimensional time-dependent
Schrödinger equation (TDSE) for a single-electron model
atom.
Different electronic quantum paths contribute to the

radiating dipole [16]. It was shown theoretically [10,17]
that the properties of the contributions of the different
quantum paths depend smoothly on the laser field parame-
ters, whereas the dependence of the total microscopic
harmonic signal on them is complicated [8,16] due to the
interference of the different quantum paths. Our study
shows that the above also holds for the polarization state
of HH. It is therefore instructive to treat the contributions
from different quantum paths separately. Since different
trajectories dominate at different time intervals, it allows
us to time resolve the sublaser-cycle evolution of harmonic
polarization. In our analytical study we will consider for
every harmonic only the two most important quantum
paths (the ‘‘short’’ and the ‘‘long’’ ones) which correspond
to the travel time � shorter than one fundamental cycle.
While the numerical TDSE integration allows finding

the microscopic response, there is no easy way to separate
contributions of different quantum paths in the numerically
calculated response. Today we can only refer to a rather
complicated indirect technique based on the analysis of the
set of numerical TDSE solutions for different intensities
[18]. We propose a novel approach to direct separation of
the contributions of different quantum paths in the numeri-
cal microscopic response. The idea of the approach lies in
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suppressing the electron wave function in a certain part of
the phase space determined by the position of the relevant
classical trajectory in this space. The details of this tech-
nique will be described in Ref. [19]. In the present Letter,
we extract the contribution of short paths using the
frequency-resolved absorption technique [20]. The 3D
simulation was done with a fully parallel code ‘‘SELAB’’
[21] for a model argon potential [22]. The separation of the
quantum path contributions is illustrated by Fig. 1 showing
the scalograms of the responses. We see that the short
path’s contribution is selected very accurately.

Using the results of the TDSE integration for laser
ellipticities up to 0.2 we find the harmonic ellipticity and
the rotation angle of the polarization ellipse (also known as
offset angle). We find that both quantities depend remark-
ably linearly on the fundamental’s ellipticity, in agreement
with experiments [1,4]. The harmonic intensity decreases
with the fundamental ellipticity, and the threshold

ellipticity (the fundamental ellipticity for which the gen-
eration efficiency is 2 times less than for the linearly
polarized field) calculated for HHG in Ar with 800 nm
laser quantitatively agrees with experiment [11] for differ-
ent harmonic orders.
Below we derive analytical equations for HH rotation

angle and ellipticity. The x and y directions are chosen
along the major and minor axis of the fundamental polar-
ization ellipse, respectively. Let �px and �py be the momen-

tum components of the classical electron, which started
from the origin with zero velocity, �y is the transverse shift
of this electron, accumulated due to the nonzero funda-
mental ellipticity by the instant of return to x ¼ 0, and � is
the electron excursion time. In the simple-man picture, the
HHG is associated with the electron that starts from the
origin with the initial y momentum � �y=� and therefore
returns exactly to the origin. Thus the ‘‘classical’’ rotation
angle is defined by the direction of the electron momentum
at the instant of the return

c class ¼ arctan

�
�py � �y=�

�px

�
: (1)

Substituting the parameters of the classical electron
trajectory [23,24] in this equation we find

c class ¼ "

�
1

!�
þ cosð!trÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W=ð2UÞp
�
: (2)

Here " is the fundamental ellipticity, U ¼ E2=ð4!2Þ is the
ponderomotive energy and W is the kinetic energy of the
returning electron. This energy is related to the harmonic
order by W ¼ q!� I, where I is the ionization energy.
The electron return instant tr, the ionization instant ti, and
� can be found from W as described in [23,24].
The rotation angle can be found more accurately taking

into account quantum-mechanical features of the electron
motion. To do this, we use complex amplitudes of the x and
y components of the harmonic response fx and fy found in

[10] [Eqs. (33),(34)]. Defining the rotation angle as
c q�m ¼ arctanRe½fy=fx� we find

c q�m ¼ "

�cosð!tiÞ �!� sinð!tiÞð1þ 4
�2�p4

?
Þþ

ffiffiffiffiffiffiffiffiffiffiffiffi
W=ð2UÞ

p
!�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W=ð2UÞp ð1þ 4
�2�p4

?
Þ

�
;

(3)

where �p? is the uncertainty of the transverse electronic
momentum after ionization: �p2

? ¼ 2IE cosð!tiÞ [25].
Figure 2(a) shows the rotation angle as a function of

the harmonic order for 0< �< 2�=! found from the
described approximations as well as from the numerical
simulation for the short quantum path. The analytical
results agree well with the numerical ones, except
lowest-order harmonics (this disagreement is natural
because they can hardly be described via strong-field
approximation). For the higher harmonics the

FIG. 1 (color online). Wavelet transform of the numerical
atomic response for 1300 nm, 2:2� 1014 W=cm2, elliptically-
polarized fundamental with ellipticity 0.1: (a) the full response
and (b) the contribution of the short quantum path. The dashed
line in panel (a) shows the harmonic frequency found within the
simple-man model; this curve in fact corresponds to the quantum
orbits dominant for the high harmonics. Panel (c) presents the
HH polarization properties of dominant contribution found using
Eqs. (2) and (5), and experimental data on the rotation angle
(green circles) and the upper limit of ellipticity divided by 2 (red
squares) from [3,4] (see text for details).
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quantum-mechanical approach gives better results than the
classical one.

As for the harmonic ellipticity, it cannot be described
with a classical model, as discussed above. We define the
harmonic ellipticity as � ¼ arctanRe½ify=fx�. Using fx
and fy from [10] we find

� ¼ �y

�px½�2�p2
?=2þ 2=�p2

?�
; (4)

and substituting the parameters of the classical electron

motion in this equation we find for !�2I
ffiffiffiffi
U

p � 1:

� ¼ "=ðI!�
ffiffiffiffiffiffiffiffi
2W

p Þ: (5)

Figure 2(b) shows the harmonic ellipticity calculated
numerically, as well as one found analytically with the
latter equation. One can see that the analytical quantum-
mechanical approximation provides very good agreement
with numerical results for almost all harmonics except the
lowest-order ones. Note that ellipticities of the both quan-
tum paths contributions have the same sign as the funda-
mental has (i.e. the instantaneous harmonic field vector
rotates in the same direction as the fundamental one does).
However, in the total numerical response few harmonics
have opposite ellipticity, as it was earlier reported in [8].
Our studies show that this anomalous ellipticity originates

from the contributions of the quantum paths with the
excursion time exceeding optical cycle.
Thus, our theoretical approach provides quantitative

agreement with numerical results. Moreover, it enables
calculation of the temporal sublaser-cycle evolution of
the XUV polarization state [see Fig. 1(c)]. In this figure
we also present experimental results [3,4]. Note that the
harmonic ellipticity upper limit, but not the ellipticity itself
was measured in [4] due to experimental limitations.
Although obtained for different media, harmonic orders,
fundamental intensities and wavelengths, the experimental
results demonstrate clear tendency if presented as func-
tions of the classical electron return time, reconstructed for
every experimental point. The polarization properties cal-
culated as functions of this time for conditions of these
experiments are very close to each other, except the ellip-
ticity for Ar which, for the conditions of [4], is therefore
shown separately with the dash-dotted line. The harmonic
rotation angle agrees very well with the analytical result,
and the ellipticity upper limit is about 2 times higher than
the ellipticity found from our model.
Our approach allows qualitative understanding of the

harmonic ellipticity origin as well. From Eq. (4) one can
see that the harmonic ellipticity originates from the
quantum-mechanical uncertainty of the transverse elec-
tronic momentum. This nonzero uncertainty corresponds
to the finite size of the wave packet. When the wave packet
traveling near the parent ion is shifted in the transverse
direction (by the displacement �y), the parent ion ‘‘sees’’ a
slope of the population density in the wave packet: the
population density grows towards the packet center. This
asymmetry finally leads to a certain y component of the
dipole oscillating with a�=2 phase shift with respect to the
x component, and thus to the harmonic ellipticity.
To illustrate these speculations in more detail, let us

consider a bound state c 0ðx; y; zÞ ¼ c ðxÞc ðyÞc ðzÞ (where
c is an even function) and a free electronic wave packet
moving along the x coordinate �ðx; y; zÞ ¼ fðy; zÞ�
expðipxÞ. Assume that the maximum of the amplitude
fðy; zÞ is shifted in the y direction, so the amplitude can
be expanded in the Taylor series in the vicinity of the origin
as f ¼ f0 þ f1y. The dipole moment of the system is d ¼R
c �

0r�drþ c:c. For its x and y components we find dx /
f0 and dy / if1. Thus the phase difference between oscil-

lations of the two components is�=2, i.e., the total signal is
elliptically polarized, and the ellipticity is proportional to
the slope of the population density of the wave packet in
the y direction.
Note that a factor proportional to this slope appears

already in (4). Indeed, consider a Gaussian wave packet
with the size �2�p2

?=2þ 2=�p2
?. The slope of its ampli-

tude is

@

@y
exp

�
� y2

�2�p2
?=2þ 2=�p2

?

�
/ y

�2�p2
?=2þ 2=�p2

?
:

FIG. 2 (color online). Harmonic rotation angle (a) and ellip-
ticity (b) as functions of the harmonic order, the laser parameters
are the same as in Fig. 1. Numerical results for the short quantum
path (squares), analytical quantum-mechanical results given by
Eq. (3) (graph a) and Eq. (5) (graph b) for the short (solid line)
and the long (dashed line) quantum path. Graph (a) presents also
classical rotation angle given by Eq. (2).
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Note that in this Letter we do not take into account
Coulomb effects. Good agreement of the analytical and
numerical results shows that the Coulomb effects are not
responsible for the harmonic ellipticity, at least for the
short quantum path and not very low harmonic orders.

The nonzero ellipticity of the generated radiation appears
in other processes involving electron-ion recombination
(e.g., in the HHG by cross-polarized fields with different
colors). To describe the polarization properties of the gen-
erated radiation one should substitute the parameters of the
classical electron trajectory (in such field) in Eqs. (1) and (4).
The simplicity of our model can allow, in particular, finding
the field configuration providing XUV with the desired
polarization properties. Our model can be generalized to
find the polarization properties of the HHG from molecules,
actively studied experimentally [5–7]. For instance, to cal-
culate the y component of the emitted radiation for a dia-
tomic homonuclear molecule one can apply our approach in
conjunction with the two-center model [26]. If the molecular
axis is nonparallel to the polarization direction, the returning
electron wave packet slightly misses every of the centers
(even in the linearly polarized fundamental), and thus the y
component from every center appears. For the perpendicular
orientation these contributions compensate each other, but
for different orientation their interference leads to nontrivial
behavior of the harmonic polarization properties. For the
total y component we find dmol

y / sinðpxR cosð�Þ=2Þ sinð�Þ
where � is the angle between the molecular axis and the
polarization direction, and R is the internuclear distance.
This dependence agrees very well with experimental results
showing maximal intensity of the y component [6] and
maximal ellipticity [6,7] for � � 500 for different harmonics
in N2. Further results on the generalization of our approach
to the molecular case will be presented in [19].

Moreover, our model can be useful for understanding of
the polarization of light emitted with coherent wave pack-
ets even beyond the recombination, for instance, in the
‘‘wave-packet-spreading’’ regime [27], or in the dynamic
stabilization regime [28].

In conclusion, in this Letter, based on the detailed nu-
merical and analytical study of the polarization properties
of the harmonics, we offer an explanation for the origin of
the ellipticity of the harmonics generated in atomic gases
by elliptically polarized laser fields. The harmonic ellip-
ticity results from the limited size of the electronic wave
packet coming back to the parent ion and generating
harmonics: the ellipticity naturally appears when the center
of the wave packet misses the parent ion. We have also
derived very simple analytical equations describing HH
polarization properties, which agree well with the numeri-
cal results for the short quantum path. These equations
allow, in particular, clear description of the sub-laser-cycle
evolution of the XUV polarization state. Our model can be

generalized to study HHG in the cross-polarized fields of
different colors, as well as HHG from molecules. We
believe that the achieved understanding of the harmonic
ellipticity in the recombination process can be useful for
study of other recollision-induced phenomena involving
light emission with coherent wave packets.
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