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Optomechanical systems couple light stored inside an optical cavity to the motion of a mechanical mode.

Recent experiments havedemonstrated setups, such as photonic crystal structures, that in principle allowone

to confine several optical and vibrational modes on a single chip. Here we start to investigate the collective

nonlinear dynamics in arrays of coupled optomechanical cells.We show that such ‘‘optomechanical arrays’’

can display synchronization, and that they can be described by an effective Kuramoto-type model.
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The emerging field of optomechanics seeks to explore the
interaction between nanomechanics and light (see [1] for a
recent review). Rapid progress in laser cooling of nano-
mechanical oscillators [2,3] promises new fundamental
tests of quantum mechanics [4], while applications benefit
from ultrasensitive detection of displacements, masses and
forces [5–7]. Recently, the exciting concept of optomechan-
ical crystals has been introduced [8–10], where defects in
photonic crystal structures are used to generate both local-
ized optical and mechanical modes that interact with each
other. For instance, this opens the prospect of integrated
optomechanical circuits combining several functions on a
single chip (see also [11,12]). On a fundamental level, this
raises questions concerning potential collective dynamics
in systems consisting of many coupled optomechanical
cells, which we will term optomechanical ‘‘arrays’’
[Figs. 1(a) and 1(b)]. Here we start to address this issue
and explore, in particular, synchronization phenomena.

Any optomechanical system consists of a laser-driven
optical mode (OM) whose frequency shifts in response to a
mechanical displacement: �!opt ¼ �Gx. For a laser red-

detuned from the OM (� ¼ !Laser �!opt < 0Þ, dynamical

backaction effects induced by the finite photon decay time
��1 lead to cooling of the mechanical motion. For blue
detuning (�> 0), antidamping results. Once this over-
comes the internal mechanical friction, a Hopf bifurcation
towards a regime of self-induced mechanical oscillations
takes place [Fig. 1(c)] [13–18]. While the mechanical
amplitude A is fixed, the oscillation phase ’ is undeter-
mined and, as we will see, may lock to external forces or to
other optomechanical oscillators.

Synchronization has first been discovered by Huygens and
is now recognized as an important feature of collective
nonequilibrium behavior in fields ranging from physics
over chemistry to biology and neuroscience [19]. A paradig-
matic, widely studied model for synchronization was intro-
duced by Kuramoto [20]. For two oscillators, his phase
evolution equation reads _’1 ¼ �1 þ K sinð’2 � ’1Þ,

and likewise for _’2. One finds synchronization ( _’1 ¼ _’2)
if the couplingK exceeds the thresholdKc ¼ j�2 ��1j=2,
and the phase lag �’ ¼ ’2 � ’1 vanishes for large K
according to sinð�’Þ ¼ ð�2 ��1Þ=2K. For the globally
coupled, mean-field type version of infinitely many oscilla-
tors, there is a phase transition towards synchronization
beyond some threshold Kc that depends on the frequency
distribution [21]. In many examples the Kuramoto model is
found as a generic, reduced description of the phase dynam-
ics. Nevertheless, for any specific system, it remains to be
seen whether this model (or possibly a structurally similar
variant thereof) applies at all, and how the coupling K is
connected to microscopic parameters [22–24]. We now turn
to this question in the case of optomechanical oscillators.
A single optomechanical cell consists of a mechanical

mode (displacement x) coupled to a laser-driven OM (light
amplitude �):

m €x ¼ �m�2x�m� _xþ @Gj�j2; (1)

_� ¼
�
ið�þGxÞ � �
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�
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2
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FIG. 1 (color online). Optomechanical crystals may be used to
build arrays with several localized optical and mechanical
modes. (a) Potential setup fabricated as a periodically patterned,
freestanding dielectric beam on a chip with laser drive via
tapered fibre as in [8,9]. (b) Schematic array of mechanically
coupled optomechanical cells. (c) For a single cell, at sufficient
laser drive power, there is a Hopf bifurcation towards self-
induced mechanical oscillations with an undetermined phase ’.
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Here, F ¼ @Gj�j2 is the radiation pressure force, � the
mechanical frequency, � the intrinsic damping, G the
optomechanical frequency pull per displacement, and
�max is the maximum light-field amplitude achieved at
resonance (set by the laser input power).

Near the Hopf bifurcation [Fig. 1(c)], we choose as a
starting point for our analysis the equations of a Hopf
oscillator that describe the slow mechanical phase and
amplitude dynamics [16] which result from integrating
out the light field:

_’ ¼ ��þ FðtÞ
m�A

cosð’Þ; (3)

_A ¼ ��ðA� �AÞ þ FðtÞ
m�

sinð’Þ: (4)

In this Hopf model, �A describes the steady-state amplitude,
and � is the rate at which perturbations will relax back to �A.
Moreover, we have introduced an external force FðtÞ (as
added to Eq. (1)). The dependence of �, �A on the micro-
scopic parameters can be deduced by expanding the
average mechanical power input provided by the radiation
pressure force, @Ghj�j2 _xi, in terms of G �A [16]. This yields
� ¼ 2P��2 � � and ðG �A=�Þ2 ¼ ��=ð�2�4P�2Þ,
where the dimensionless coefficients �2ð�=�; �=�Þ and
�4ð�=�; �=�Þ only depend on the rescaled detuning and
cavity decay rate. P ¼ @G2�2

max=m�3 is the rescaled laser
input power. Note that the oscillation frequency in the
Hopf model will be renormalized by the ‘‘optical spring
effect’’ [8].

We start our discussion by considering phase-locking to
an external force FðtÞ ¼ F0 sinð!FtÞ. To this end we time-
average Eq. (3), keeping only the slow dynamics, under the
assumption !F � �. This results in the Adler equation
� _’ ¼ ��þ KF sinð�’Þ, where �’ ¼ ’ðtÞ þ!Ft, �� ¼
!F ��, and KF ¼ F0=2m� �A. Direct numerical simula-
tion confirms the good agreement between the microscopic
optomechanical dynamics and the simplified descriptions,
i.e., Hopf Eqs. (3) and (4) and the Adler phase equation
(analogous to the Kuramoto-type equations studied be-
low); see Fig. 2. The phase’ is extracted from the complex
amplitude of motion, ��xþ i _x=�¼j�jei’. Phase lock-
ing sets in when � _’ ¼ 0 has a solution, i.e., for j��j�KF,
resulting in an ‘‘Arnold tongue’’ [see Fig. 2(c)].

We now turn to the dynamics ofN mechanically coupled
cells. Optical coupling will be discussed below. Each cell is
described by Eqs. (1) and (2). To these equations, we
add mechanical couplings where we consider a general
coupling matrix set by individual spring constants
kij: m €xi ¼ . . .þP

j�ikijðxj � xiÞ. In the Hopf model

with phase dynamics ’iðtÞ and amplitude dynamics
AiðtÞ according to Eqs. (3) and (4), this yields a force
Fi ¼

P
j�ikijAj cosð’jÞ on cell i.

To arrive at the time-averaged dynamics for the phase
exclusively, it is necessary to go further than before,
carefully respecting the amplitude dynamics AiðtÞ ¼ �Ai þ
�AiðtÞ in the phase equation (see [25,26] for

further examples where the amplitude dynamics is

crucial). The formal solution for �AiðtÞ is �AiðtÞ ¼R
t
�1 e��ðt�t0Þ ~fiðt0Þdt0, where ~fiðtÞ¼P

j�iðkij=mi�iÞð �Ajþ
�AjðtÞÞcos’jðtÞsin’iðtÞ. In the following, we consider

small couplings, where �Ai � �Ai. In this case we can
evaluate the formal solution �AiðtÞ and find an expression
�Aið’1; . . . ; ’NÞ. Thus, we can eliminate the amplitude
dynamics from the equations for _’i, where we expand
Aj=Ai to leading order. Finally, we perform a time average,

keeping only the slow phase dynamics near frequencies 0
and�j�j ��ij. We thus arrive at an effective Kuramoto-

type model for coupled optomechanical Hopf oscillators,

@t’i ¼��iþ
X
j�i

�ij

2
cosð’j�’iÞ

þX
j�i

X
k�j

�ij�jk

8�
ðsinð2’j�’k�’iÞ� sinð’k�’iÞÞ

þX
j�i

X
k�i

�ij�ik

8�
sinð’kþ’j�2’iÞ (5)

where �ij ¼ kij �Aj=mi�i
�Ai.

For two coupled cells (N ¼ 2, kij ¼ k), Eq. (5) yields

for the phase difference �’ ¼ ’2 � ’1:

� _’ ¼ ���� C cosð�’Þ � K sinð2�’Þ: (6)

In contrast to the standard Kuramoto model, 2�’ appears,
which will lead to both in-phase and antiphase synchroni-
zation. This corresponds to two distinct minima in the
effective potential that can be used to rewrite Eq. (6):
� _’ ¼ �U0ð�’Þ. The description in terms of a phase
particle sliding down a washboard potential [Fig. 3(a)] is
similar to that of an overdamped Josephson junction driven
by a current bias set by ��. The coupling constants are
given by C ¼ ð�12 � �21Þ=2, K ¼ ð�12 þ �21Þ2=8�. In the
following we focus on the case of nearly identical cells
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FIG. 2 (color online). Phase locking of an optomechanical cell
to an external force. (a) Phase lag �’ between oscillations and
force, outside (left) and inside (right) the phase-locked regime.
(b) Time-average hsin�’i as function of �� comparing opto-
mechanics (blue, solid) against the Hopf model (magenta, dash-
dot) and the Adler phase equation (black, dash). Colored region
indicates � _’ ¼ 0. (c) ‘‘Arnold tongue’’; hsin�’i in the force vs
frequency difference plane. Lines show the transition towards
phase-locking; styles as in (b). The triangle labels F0 in (b).
(Microscopic cell parameters: �=� ¼ 1, �=� ¼ 1, �=� ¼
0:01, P ¼ @G2�2

max=m�3 ¼ 0:36).
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where the coupling C can be neglected (C=�� ¼
k=2m�2 � 1), and K ¼ k2=2m2�2�.

To test whether the features predicted by Eq. (6) are
observed in the full optomechanical system, we directly
simulate the motion and increase the coupling k for a fixed
frequency difference �� ¼ �2 ��1. The results are dis-
played in Fig. 3(b). Beyond a threshold kc, the frequencies
and phases lock, indicated by a kink in hsin�’i. As the
coupling increases further, the phases are pulled towards
each other, so j�’j decreases. As predicted, there is both
synchronization towards �’ ! 0 and �’ ! �. The de-
pendence of the threshold kc on the frequency difference

�� is shown in Fig. 3(c). The observed behavior kc/
ffiffiffiffiffiffiffiffi
��

p
at small �� is correctly reproduced by the effective
Kuramoto-type model, Eqs. (5) and (6). For ��>� de-
viations occur via terms of higher order in ��=�, starting
with �ð��=�ÞK cosð2�’Þ in Eq. (6). These produce a
linear slope kc / ��; see Fig. 3(c).

We point out that the simulation in Fig. 3 shows results
for experimentally realistic parameters (see discussion be-
low) using a laser input power well above the bifurcation
threshold. This allows one to observe the essential features
in an appropriate range of frequency detuning ��. To
achieve quantitative agreement of the Hopf model with
microscopic results in Fig. 3, its parameter � is treated as
an adjustable parameter (here � ¼ 0:02 �). Whether the
system synchronizes towards �’ ! 0 or �’ ! � also
depends on the initial conditions. Our simulations initially
start with a system at rest and consider an instantaneous
switch-on of the laser input power.

In terms of experimental realization, photonic ‘‘optome-
chanical’’ crystals [8,9] offer a novel promising way to
build optomechanical arrays [Fig. 1(a)]. To consider

coupled cells in such designs, we use finite element
methods (FEM) to simulate two identical cells arranged
on the same beam [Figs. 4(a) and 4(b)]. Figure 4(c) shows
the optical and mechanical couplings mediated by the
geometry. This indicates k=m�2 & 0:01, which we use
in our dynamical simulations, together with cell parame-
ters reported in [8,9]. Because of the relatively strong
optical coupling (� THz), distinct OMs in the individual
cells can only be achieved by patterning them to have
frequencies sufficiently different to prevent hybridization.
This requires different laser colors to address each cell.
In experiments, a convenient observable would be the

RF frequency spectrum of the light intensity emanating
from the cells, j�j2ð!Þ. Figure 5(a) shows the spectrum as
a function of frequency difference �� (additional peaks
are produced by nonlinear mixing). The comparison to
results from a simulation of Eq. (5) illustrates an excellent

FIG. 3 (color online). Phase locking of two mechanically
coupled optomechanical cells. (a) Phase particle in the effective
Kuramoto potential Uð�’Þ; desynchronized (left), phase-locked
(right). (b) Time-average hsin�’i as function of mechanical
coupling k. When k exceeds a threshold kc (colored region), the
phase difference�’ðtÞ between the oscillations locks to a constant
value despite different bare mechanical frequencies, here �� ¼
0:003�1. Both in-phase and antiphase synchronization regimes
are observed. (c) hsinð�’Þi in the plane coupling k vs frequency
difference ��, including a comparison of the critical coupling kc
(white, solid) with the one from a Hopf model with one fit
parameter (green, dash) and the effective Kuramoto-type model
(blue, dash-dot). (Cell parameters as in Fig. 2).

distance / [lattice spacing]

(a)

16 18 20 22 24 26

mechanical
coupling

[MHz]

10

6

2

14 16 18 20 22 24 26

2.5

1.5

0.5

optical
coupling

[THz]

mechanical mode

optical mode(b)

(c)
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FIG. 5 (color online). Mechanical frequency spectra Ið!Þ of
intensity fluctuations, IðtÞ ¼ j�1ðtÞj2 þ j�2ðtÞj2, for two me-
chanically coupled cells. (a) Frequency locking upon changing
the detuning �� ¼ �2 ��1 between the mechanical frequen-
cies (magenta, dash). Top: spectrum Ið!Þ from optomechanics.
Bottom: spectral peaks of

P
i cosð’iðtÞÞ from a simulation of the

effective Kuramoto-type model, Eq. (5). Depending on initial
conditions we find in-phase (blue) and antiphase (red) synchro-
nization. (k=m�2

1 ¼ 0:015). (b) Spectrum Ið!Þ and effective

Kuramoto coupling K [Eq. (6)] vs laser input power. (k=m�2
1 ¼

0:01, �� ¼ 0:005�1). (c) Example of trajectories GxiðtÞ=�
displaying strong amplitude modulation, not described by the
Kuramoto model [at power indicated by the triangle in (b)].
(Color scale indicates jIð!Þj in units of the peak height at ! ¼ 0
for a system with G ¼ 0; � peaks are broadened for clarity;
parameters as in Figs. 2 and 3)
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agreement with the effective Kuramoto-type model.
Around �� ¼ 0, we recover in-phase and antiphase syn-
chronization that differ in the synchronization frequency,
��ð�Þ � ��ð0Þ ¼ ð�12 þ �21Þ=2 ’ k=m�. Experimentally,
mechanical frequencies can be tuned via the optical spring
effect. The most easily tunable parameter however is the
laser drive power (/ �2

max); see Fig. 5(b). Synchronization
sets in right at the Hopf bifurcation while at higher drive,
we find a transition towards desynchronization. Again, this
can be explained from our analytical results. We know that
� increases away from the Hopf bifurcation (i.e., for higher
drive), leading to a concomitant decrease in the effective
Kuramoto coupling K / 1=� [inset Fig. 5(b)], and finally a
loss of synchronization (K < ��). In some regimes, we
observe strong amplitude modulation where the Kuramoto
model fails [Fig. 5(c)].

For large arrays (N � 2), one might be interested in a
long-range, global coupling between cells (kij ¼ kg). This

can be designed in terms of a fast (�ext � �i), extended
optical mode �ext, coupled to the mechanics of each cell,
[Fig. 6(a)]. The light-field intensity is then modulated byP

jxj, and the light force thus generates a global mechani-

cal coupling kg ¼ �@G2j ��extj2 8�
4�2þ�2

ext
, where j ��extj2 is

the average number of circulating photons tunable via the
laser power. kij ¼ kg enters Eq. (5).

Figure 6(b) shows results on the order parameter � ¼
hj 1N

P
ke

i’k j2i for an array of ten globally coupled optome-

chanical cells [Fig. 6(a)]. For small coupling, each cell
oscillates independently, the phases ’k are random, and
thus � ¼ 1=N. For larger coupling, we find a regime where
the phases are not fully phase locked but the phase factors
become anticorrelated, decreasing �. At large kg there is a

transition to phase locking, where finally all cells are
synchronized with � ’ 1. All these features are reproduced
nicely by the effective Kuramoto-type model, Eq. (5),
[Fig. 6(b)].

To conclude, we have introduced optomechanical arrays
as a new system to study collective oscillator dynamics,
with room-temperature operation in integrated nanofabri-
cated circuits and with novel possibilities for readout and
control, complementing existing research on Josephson
arrays [22], laser arrays [23] and other nanomechanical

structures [24,27]. Recent experiments on 2D optomechan-
ical crystals [28] could form the basis for investigating
collective dynamics in 2D settings with various coupling
schemes. Applications in metrology and time-keeping may
benefit from phase noise suppression via synchronization
[29]. Variations of the optomechanical arrays investigated
here may also be realized in other designs based on exist-
ing setups, like multiple membranes in an optical cavity
[30] or arrays of toroidal microcavities [2,5].
We thank O. Painter, H. Tang, and J. Parpia for fruitful

discussions, and GIF as well as DFG (Emmy-Noether
program, NIM) and DARPA ORCHID for funding.
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