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It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here

we propose a method for realizing a controlled phase gate between two stored photons. The photons are

both stored in the ground state of the effective trapping potential inside the condensate. The collision-

induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a

Feshbach resonance. A controlled phase shift of � can be achieved in 1 s or less.
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Photons are ideal carriers of quantum information over
long distances. It is interesting to explore their potential for
the implementation of quantum information processing as
well. This is particularly relevant for quantum repeaters
[1–3], which would allow one to distribute quantum states
over distances that are inaccessible by direct transmission.
Quantum repeaters require both the capability to store
photons for relatively long times and to perform efficient
quantum gates between them [3]. Potential architectures
where storage and quantum gates can be achieved in the
same system are particularly attractive. Recently it was
shown that light can be stored for over a second in a Bose-
Einstein condensate (BEC) [4], making condensates a very
interesting candidate system for the implementation of
quantum memories. Quantum repeaters can tolerate long
gate times in the subsecond range, since repetition rates are
in any case limited by other factors such as communication
times and transmission probabilities. It is therefore of great
interest to explore the potential for photon-photon gates in
BECs, where interactions between stored excitations are
weak, but nonzero. This also leads one to consider fasci-
nating experiments at the interface of quantum optics and
cold-atom physics [5].

The simplest controlled phase gate between two
light modes corresponds to the operation j0i1j0i2!
j0i1j0i2, j0i1j1i2!j0i1j1i2, j1i1j0i2 ! j1i1j0i2, j1i1j1i2!
ei�j1i1j1i2, where the states j0i and j1i correspond to
zero- and one-photon states of the two modes (labeled 1
and 2) [6]. The controlled phase� only occurs for the state
where there is a photon in each mode. For quantum infor-
mation processing a controlled phase � ¼ � is desirable.
Here we will show that this can be achieved by having the
two modes interact in a BEC. Since the phase is due to a
photon-photon interaction, no phase is accumulated if no
photons or only one photon is present. In the following we
therefore focus on the case where there is one photon in
each mode.

Our theoretical treatment is inspired by Ref. [7], which
discussed processing optical information in BECs, and by
Ref. [8], which studied two-component interactions in

BECs. The present proposal led us to extend these theo-
retical approaches into the quantum (i.e., few-excitation)
regime. Based on this theory, we show that phase shifts of
� due to the interaction between two stored photons can
be achieved on subsecond time scales, by combining a
Feshbach enhancement of the relevant scattering length
and an adiabatic compression of the trap after the photons
have been stored. The fidelity of photon-photon gates can
be affected by unwanted multimode effects (see, e.g.,
Ref. [9]). In the present proposal these effects are greatly
suppressed by the fact that the interaction is much weaker
than the confinement, ensuring high-fidelity operations.
Let us assume that the two photons have orthogonal

polarization. Their propagation inside the BEC can be
controlled by two independent control beams, leading to
storage in two different atomic levels 1 and 2, where
the BEC was prepared in level 0 (see Fig. 1). Slow and
stopped light in BECs has been thoroughly investigated
[4,7,10–12]. Because of the linearity of the equations of
motion, the physics of storage and retrieval is the same at
the single-photon level as for weak classical probe pulses
[13,14]. Inside the medium and in the presence of the
appropriate control beam, the photon is converted into a
slowly moving polariton, which can be stopped by adia-
batically switching off the control beam, thus converting
the photon into a stored atomic spin wave. Running the
process in reverse allows the reconversion of spin waves
into photons. Here we focus on the interaction between the

FIG. 1 (color online). Level scheme for photon-photon gate.
The BEC is prepared in level 0. The single photons in modes E1

and E2 can be independently stored as delocalized excitations in
levels 1 and 2, using the control beams �1 and �2.
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two spin waves, once the control beams have been turned
off. Because of the weakness of the collision-induced
interactions the time scale for the storage and retrieval
processes is much shorter than the time scale on which
significant interaction occurs in the photon-photon regime.

The dynamics of the atomic spin waves is governed by
the collisional interactions between atoms in combination
with the external trapping potential. Spin waves in levels
1 and 2 experience an effective trapping potential and
effective collisional interactions that depend on the differ-
ences between the atomic scattering lengths in the various
atomic levels [8]. These differences, which are usually
small, can be enhanced by Feshbach resonances [15–17].
We consider a situation where both spin waves experience
the same effective trapping potential, and where they are
both in its ground state. The latter condition can be
achieved by carefully matching the pulse duration and
width of the incoming photons and the intensity of the
control beams (which determines the propagation speed
and thus the longitudinal extent of the polaritons inside the
condensate during the storage process) to the parameters of
the effective trapping potential. We focus on the regime
where the stored spin waves are localized well inside the
condensate (cf. Fig. 2).

The interaction strength, and thus the accumulated con-
trolled phase shift for a given time, then strongly depends
not only on the scattering lengths, but also on the size of the

ground state wave packets. During storage and retrieval,
this size has to be significantly larger than a wavelength,
due to focusing restrictions for the transverse dimensions
and in order to justify the slowly varying envelope descrip-
tion which underlies the polariton picture for the longitu-
dinal dimension. However, in between storage and retrieval
it is possible to adiabatically increase the trapping poten-
tial, thus reducing the size of the ground state wave packets
while keeping the spin waves in the ground state (see
Fig. 2). This enhances the interaction strength, making
controlled phase shifts of � achievable on 1 s time scales.
Note that the basic ingredients of the present proposal are
similar to those of single-atom quantum gates schemes
based on cold collisions such as Refs. [18,19].
We now describe our proposal in more quantitative

terms. Our treatment of the spin waves inside the BEC
(once the control beams have been turned off) is based on
Refs. [8,20]. The Gross-Pitaevskii equation for the macro-
scopic wave function c 0 of the condensate is
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r2 þ VðxÞ þU00jc 0j2 þU01jc 1j2

þU02jc 2j2
�
c 0; (1)

where m is the atomic mass, V is the trapping potential,
U00, U01, U02 are the collisional interaction potentials,
which are related to the corresponding scattering lengths

a00, a01, a02 by U0j ¼ 4�@2a0j
m , and c 1, c 2 are the macro-

scopic wave functions for levels 1 and 2. We will make the
transition to a single-quantum description for the latter in a
moment.
For a sufficiently large condensate, and keeping in mind

that the perturbation due to the spin waves in levels 1 and 2
is extremely weak in our case, the solution for c 0 will be
essentially stationary, and the stationary equation for a
chemical potential � can be solved in the Thomas-Fermi
approximation (i.e., neglecting the kinetic term) [20],
giving

jc 0j2 ¼ 1

U00

ð�� V �U01jc 1j2 þU02jc 2j2Þ; (2)

where � is the chemical potential. This solution of Eq. (2)
can now be inserted into the Gross-Pitaevskii equations for
c 1 and c 2. Corrections to the Thomas-Fermi approxima-
tion mainly affect the boundary layer of the condensate
[21]. We therefore expect the present treatment to be
correct under the above-mentioned condition that the
spin waves in levels 1 and 2 are localized well inside
the BEC.
In order to describe the few-excitation regime, we re-

place the macroscopic wave functions c 1, c 2 by quantum

field operators ĉ 1, ĉ 2 satisfying commutation relations

½ĉ iðxÞ; ĉ y
j ðx0Þ� ¼ �ij�

ð3Þðx� x0Þ, in analogy to the

transition from classical to quantum nonlinear optics
[22]. They fulfill the equations (neglecting a constant
energy shift that depends on �)

FIG. 2 (color online). Principle of photon-photon gate.
(a) Photons 1 and 2 are independently absorbed by the BEC.
(b) Both are converted into atomic excitations that are in the
ground state of the effective trapping potential (see text). (c) The
collision-induced interaction between the atomic spin waves is
enhanced by adiabatically increasing the trapping potential, thus
reducing the size of the ground state wave functions (and of the
BEC). (d) The trapping potential is adiabatically brought back to
its original value. (e) The photons can be read out independently.
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where ~Vi ¼ ð1� a0i
a00
ÞV are the effective trapping potentials

and ~Uij ¼ 4�@2

m ðaij � a0ia0j
a00

Þ are the effective interaction

potentials, which are all modified due to the interaction
with the background condensate in level 0. These equations
are analogous to those obtained in Ref. [8] for the two-level
case. Here we have assumed that the bare trapping poten-
tial V is the same for all atomic levels. Moreover for
simplicity we will assume that a01 ¼ a02 implying ~V1 ¼
~V2 ¼ ~V. We require a01 < a00 in order for ~V to be attrac-
tive, provided that V is attractive [23].

The quantum fields ĉ 1 and ĉ 2 in Eq. (3) describe
quantum-level excitations in levels 1 and 2. Equation (3)
can be used to describe the dynamics of any number of
excitations. However, we are interested in the case where
there is exactly one excitation in each level. It is then
convenient to introduce the two-particle wave function

c 12ðx1;x2Þ ¼ h0jĉ 1ðx1; tÞĉ 2ðx2; tÞj�i, where j0i is the
state without any excitations (i.e., the state where there is
just the condensate in level 0), and

j�i ¼
Z

d3x1d
3x2�0ðx1Þ�0ðx2Þĉ y

1 ðx1Þĉ y
2 ðx2Þj0i (4)

is the initial state (after storage), which consists of one
atomic excitation in each level (1 and 2), both of which are
in the ground state�0 of the effective trapping potential ~V.
In the Heisenberg picture for the quantum field theory the
state remains constant, but the field operators evolve ac-
cording to Eq. (3). As a consequence, the two-particle
wave function c 12 defined above evolves according to
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1þr2
2Þþ ~Vðx1Þþ ~Vðx2Þ

þ ~U12�
ð3Þðx1�x2Þ

�
c 12ðx1;x2; tÞ; (5)

with the initial condition c 12ðx1;x2; 0Þ ¼ �0ðx1Þ�0ðx2Þ.
We assume a spherically symmetric harmonic potential
~VðxÞ ¼ 1

2m ~!2x2, implying �0ðxÞ ¼ ðm ~!
�@ Þ3=2e�ðm ~!x2Þ=2@.

It is convenient to transform to center-of-mass and rela-

tive coordinates defined by X ¼ x1þx2ffiffi
2

p and r ¼ x1�x2ffiffi
2

p . In

these coordinates the wave function is separable at all

times, c 12ðX; r; tÞ ¼ e�ið ~!=2Þt�0ðXÞc ðr; tÞ. The center-
of-mass wave function exactly remains in the ground state
of ~V. The relative coordinate wave function c ðr; tÞ fulfills
the equation
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r2þ ~VðrÞþ �U12�

ð3ÞðrÞ
�
c ðr;tÞ; (6)

where �U12 ¼ ~U122
�ð3=2Þ. The interaction between the two

spin wave excitations inside the BEC is thus reduced to a
fairly simple problem in one-particle quantum mechanics.
In practice the interaction energy associated with the

�U12 term is 2 to 3 orders of magnitude smaller than the
harmonic oscillator energy scale @ ~!. As a consequence,
the use of perturbation theory is well justified. Because of
the large separation between the two energy scales, c ðr; tÞ
remains essentially proportional to the ground state (see
below). However, the interaction term in Eq. (6) causes a
shift of the ground state energy, which is given by

�E¼h�0j �U12�
ð3ÞðrÞj�0i¼ �U12j�0ð0Þj2¼ �U12s

�3; (7)

where s ¼
ffiffiffiffiffiffi
�@
m ~!

q
is the characteristic length scale of the

ground state wave function, which is related to its full

width at half maximum l by s ¼ ffiffiffiffiffiffiffi
�

8 ln2

p
l. This energy shift

is the basis of our quantum gate proposal. Since it is due to
the interaction, it only occurs if there are two excitations in
the condensate, allowing one to realize a controlled phase
gate as described in the introduction. The gate naturally has
high fidelity [9] because the correction terms to the ground

state wave function have amplitudes of order �E
@ ~! � a12

s ,

which is smaller than 10�2 even for the largest scattering
length and smallest ground state size that we will consider.
This means that, apart from the phase, the overlap with the
initial state remains extremely high, which is exactly what
is required for high-fidelity operation [9].
The remaining challenge is therefore to achieve a con-

trolled phase shift of �. Let us begin by choosing parame-
ter values that should be straightforwardly achievable. For
example, one can choose level 0 in the F ¼ 1 submanifold
of 87Rb, and levels 1 and 2 in the F ¼ 2 submanifold,
giving a00 ¼ 5:39 nm, a01 ¼ a02 ¼ 5:24 nm, and a12 ¼
5:58 nm [20], and a full width at half maximum for the
ground state wave packet l ¼ 8 �m (corresponding to
about ten wavelengths). With these values one finds that
the time required for a phase of � is 6 min, which at first
sight may seem rather discouraging. We now discuss how
to overcome this difficulty by acting both on the �U12 factor
and the s�3 factor in Eq. (7).

The factor �U12 ¼
ffiffi
2

p
�@2

m ða12 � a01a02
a00

Þ is very small for

the values given above because there is a quasicancellation
between the two terms in parentheses because all the
scattering lengths are so similar. A moderate increase in
a12, which can be achieved using a Feshbach resonance
[15–17], can therefore lead to a very large increase of �U12.
For example, increasing a12 by a factor of F ¼ 3, which
was already demonstrated in Ref. [16] for 87Rb, increases
�U12 by a factor of 24.
A comparable gain can be achieved by acting on the

second factor in Eq. (7), i.e., on the size of the wave
function, or equivalently on the trapping frequency. We
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already mentioned in the introduction that l (and thus s)
cannot be too small during the storage process, because
focusing becomes too difficult and the slowly varying
envelope approximation breaks down. However, the trap-
ping frequency can be increased once the photons have
been stored (see Fig. 2) with the caveat that this increase
has to be done adiabatically so that the spin waves remain
in the ground state of the effective trapping potential. The
mentioned l ¼ 8 �m corresponds to an effective fre-
quency ~! ¼ 2� 10 Hz, which corresponds to a real trap
frequency ! ¼ 2� 50 Hz. This gives a condensate size of
17 �m for N ¼ 105 atoms in the Thomas-Fermi approxi-
mation [24]. The effective frequency can be increased to
~! ¼ 2� 80 Hz in ta ¼ 0:14 seconds while exciting the
system out of the ground state with a probability that is
smaller than 0.002. At this frequency the ground state size l
is 2:9 �m and the size of the condensate is 7:4 �m. For a
Feshbach factor F ¼ 3 a phase of order � can then be
achieved with tf ¼ 0:73 seconds. Taking into account that

one has to decrease the frequency before readout, the total
gate time 2ta þ tf is 1.01 seconds for this example. Note

that there is also a small contribution to the total phase
from the adiabatic compression and expansion periods
(see Fig. 3). The peak density of the condensate in its
compressed state is 6� 1014=cm3 in this case, which is
compatible with typical three-body loss rates [25]. Shorter
gate times could be achieved for smaller initial ground
state sizes, higher compressed densities, or larger Feshbach
enhancement factors. For example, with an initial effective
frequency of ~! ¼ 2�25 Hz, which corresponds to l ¼
5 �m, an effective frequency after compression ~! ¼
2�125 Hz, and F ¼ 10, one can achieve 2ta ¼ 0:10 s
(with a ground state excitation probability of 1:3� 10�4)
and tf ¼ 0:09 s, giving a total gate time of 0.19 s. These

values correspond to a final maximum density of 1015= cm3.
We have shown that a controlled phase of � between

individual photons is achievable on the 1 s time scale under

realistic conditions. We hope that our proposal will stimu-
late experimental work in this direction.
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