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The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated

ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The

QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently,

to the first order in the expansion in this parameter. The results obtained lay the basis for the high-

precision determination of nuclear magnetic dipole moments from measurements of the g factor of

hydrogenlike ions.
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Magnetic dipole moments of nuclei are most often de-
termined by the nuclear magnetic resonance (NMR) tech-
nique. Other methods such as atomic beam magnetic
resonance, collinear laser spectroscopy, and optical pump-
ing (OP) have also been used. The measured quantities are
usually the ratio of the frequencies (or the g factors) for the
nucleus of interest and the reference nucleus. Such ratios
can be experimentally determined with a part-per-billion
(ppb) accuracy [1]. However, magnetic moments of bare
nuclei extracted from these experiments are much less
accurate. This is because the experimental data should be
corrected for several physical effects, which are difficult to
calculate. The main effect is the diamagnetic shielding of
the external magnetic field by the electrons in the atom.
The NMR results should be also corrected for the para-
magnetic chemical shift caused by the chemical environ-
ment [2] and the OP data are sensitive to the hyperfine
mixing of the energy levels [3]. Significant (and generally
unknown) uncertainties of calculations of these effects
often lead to ambiguities in the published values of nuclear
magnetic moments [4].

Since the accuracy of calculations of the chemical shifts
cannot be reliably assessed, the means of comparison of
nuclear moments shielded by different environments in
NMR measurements are rather limited. Independent deter-
minations of nuclear magnetic moments would define un-
certainties of theoretical calculations of the chemical shifts
and help to assess the accuracy of NMR standards.

Reliable determination of the nuclear magnetic mo-
ments is also prompted by a new generation of QED
calculations of the hyperfine splitting in highly charged
ions. It was demonstrated [5] that the magnetic sector of
bound-state QED can be tested in these systems to all
orders in the binding field, if the nuclear magnetic mo-
ments are accurately known. Alternatively, comparing
theoretical predictions with experimental results, one can
determine nuclear properties and set benchmark tests for

nuclear-structure theory. A recent example is the spectro-
scopic determination of the nuclear charge radii of the
neutron-halo nuclei 8He, 11Li, and 11Be [6], which yielded
unique information about the properties of these extraor-
dinary systems.
A way to a high-precision determination of nuclear

magnetic moments is to study the simplest atomic systems,
the hydrogenlike ions. Measurements of the bound-
electron g factor in these systems progressed dramatically
during recent years and reached the ppb level [7]. They led
not only to a stringent test of sophisticated QED calcula-
tions [8,9] but also to an improved determination of the
electron mass [10]. Extensions of these experiments to ions
with a nonzero nuclear spin will provide a determination of
the nuclear magnetic moments from a simple system that
can be described theoretically up to a very high accuracy.
It is well known [11] that the nuclear-spin-dependent

part of the atomic g factor gF is suppressed by about 3
orders of magnitude as compared to the leading effect due
to the bound-electron g factor [see Eq. (1) below]. This
imposes limitations on possible determinations of the nu-
clear magnetic moment from gF. We show here, however,
that the leading effect cancels exactly in the sum of the
g factors for two hyperfine-structure levels [see Eq. (2)
below]. This sum is proportional to the nuclear g factor
and, therefore, is much better suited for extracting the
nuclear magnetic moment. Its calculation can be conven-
iently parametrized in terms of the nuclear shielding con-
stant �, as given by Eq. (2).
In this work we perform an ab initio calculation of the

nuclear magnetic shielding for the ground state of hydro-
genlike ions. The relativistic, QED, and nuclear effects are
accounted for. The main challenge is the calculation of the
QED correction. To the best of our knowledge, the only
attempt to address it was the estimate reported in Ref. [12].
In this Letter, we calculate the QED correction rigorously
to all orders in the binding nuclear strength parameter Z�
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(where Z is the nuclear charge and � is the fine-structure
constant) and, independently, we derive the leading term of
its Z� expansion.

We now turn to the theory of the g factor of a hydro-
genlike ion with a nonzero spin. Within relativistic quan-
tum mechanics, it is given by [11]

gð0ÞF ¼ gj
hj � Fi

FðFþ 1Þ �
m

mp

gI
hI � Fi

FðFþ 1Þ ; (1)

where F is the total angular momentum, I is the nuclear
spin, j is the electron angular momentum, gj is the Dirac

bound-electron g factor, gI ¼ �=ð�NIÞ is the nuclear
g factor, � is the nuclear magnetic moment, �N ¼
jej=ð2mpÞ is the nuclear magneton, m and mp are the

electron and proton masses, respectively, hj � Fi ¼
½FðFþ 1Þ � IðI þ 1Þ þ jðjþ 1Þ�=2, and hI � Fi ¼
½FðFþ 1Þ þ IðI þ 1Þ � jðjþ 1Þ�=2. The higher-order
corrections enter into Eq. (1) in two ways: (i) the Dirac
electron g factor gj is modified by QED and recoil effects

that do not depend on nuclear spin, (ii) the free-nucleus
g factor gI is shielded by the bound electron. Additional
corrections, e.g., those due to the electric-quadrupole in-
teraction [13], are small and can be absorbed into the
definition of the nuclear shielding.

For the ground state of an ion with a nuclear spin
I > 1=2, we introduce the combination of g factors �g,

�g�gF¼Iþ1=2þgF¼I�1=2¼�2
m

mp

�

�NI
ð1��Þ; (2)

with � being the shielding constant. If both g factors
gF¼Iþ1=2 and gF¼I�1=2 are measured and � is known

from theory, the above formula determines the nuclear
magnetic moment �. For the ions with a nuclear spin I ¼
1=2, Eq. (2) is not applicable and the nuclear magnetic
moment has to be determined from Eq. (1).

The nuclear shielding constant � defined by Eq. (2) can
be represented as a sum

� ¼ �ð0Þ þ ��QED þ ��rec þ ��BW þ ��Q; (3)

where �ð0Þ is the leading-order relativistic result (including
the finite nuclear size effect), ��QED is the QED correc-

tion, ��rec is the recoil correction, ��BW is the nuclear
magnetization-distribution (Bohr-Weisskopf) correction,
and ��Q is the electric-quadrupole correction.

The exact relativistic result for the leading-order mag-

netic shielding �ð0Þ was obtained analytically (for a point
nucleus) [14] and numerically [13]. The recoil correction is
known [12] to the leading order in Z�,

��rec ¼ ��Z�

3

m

M

�
1þ gN � 1

gN

�
; (4)

where M is the nuclear mass and gN ¼ M�=ð�NIZmpÞ.
The exact relativistic result for the electric-quadrupole
correction is [13]

��Q ¼ � �ðZ�Þ3Qmp

Ið2I � 1ÞgIm
6½35þ 20�� 32ðZ�Þ2�

45�ð1þ �Þ2½15� 16ðZ�Þ2� ;
(5)

where Q is the nuclear electric-quadrupole moment and

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðZ�Þ2p

.
We now turn to the QED correction to the nuclear

magnetic shielding. It consists of the self-energy (SE)
and vacuum-polarization parts, the SE being the most
difficult one. The Feynman diagrams representing the SE
correction (Fig. 1) contain two magnetic interactions, one
with the external magnetic field (in what follows, the

Zeeman interaction), VzeeðrÞ ¼ jej
2 B � ðr� �Þ, and the

other with the magnetic dipole nuclear field (in what

follows, the hfs interaction), VhfsðrÞ ¼ jej
4�� � ðr� �Þ=r3.

Formal expressions for the corresponding energy shifts can
be obtained by the two-time Green’s function method [15].
Irreducible parts of the diagrams in Figs. 1(a)–1(c) give
rise to the perturbed orbital contribution,

�Epo ¼ 2haj�ð"aÞj�ð2Þai þ 2h�ð1Þ
hfsaj�ð"aÞj�ð1Þ

zeeai; (6)

where� is the SE operator, j�ð1Þ
zeeai and j�ð1Þ

hfsai are the first-
order perturbations of the reference-state wave function

induced by Vzee and Vhfs, respectively, and j�ð2Þai is the
second-order perturbation induced by both interactions.
The SE operator is defined by

hij�ð"Þjki ¼ i

2�

Z 1

�1
d!

X
n

hinjIð!Þjnki
"�!� u"n

; (7)

where Ið!Þ ¼ e2����D
��ð!Þ, D��ð!Þ is the photon

propagator, and u � 1� i0. The diagram in Fig. 1(d) gives
rise to the hfs-vertex contribution,

�Evr;hfs ¼ 2haj�hfsð"aÞj�ð1Þ
zeeai þ 2haj�0j�ð1Þ

zeeaihVhfsi; (8)

(a) (b) (c) (d) (e) (f )

FIG. 1. Self-energy correction to the nuclear magnetic shielding. The double line represents the electron in the binding nuclear field.
The wave line terminated by a triangle represents the dipole hyperfine interaction with the nucleus and the wave line terminated by a
cross represents the interaction with the external magnetic field.

PRL 107, 043004 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JULY 2011

043004-2



where the prime denotes the derivative of the operator with
respect to the energy argument and

hij�hfsð"Þjki

¼ i

2�

Z 1

�1
d!� X

n1n2

hin2jIð!Þjn1kihn1jVhfsjn2i
ð"�!� u"n1Þð"�!� u"n2Þ

:

(9)

The diagram in Fig. 1(e) induces the Zeeman-vertex con-
tribution, in analogy with its hfs-vertex counterpart,

�Evr;zee ¼ 2haj�zeej�ð1Þ
hfsai þ 2haj�0j�ð1Þ

hfsaihVzeei: (10)

Finally, Fig. 1(f) together with the remaining derivative
terms yields the double-vertex contribution,

�Ed:vr ¼ 2h�i þ h�00ihVzeeihVhfsi þ h�0
hfsihVzeei

þ h�0
zeeihVhfsi þ 2h�0ihajVzeej�ð1Þ

hfsai; (11)

where � � �ð"aÞ is the 4-point vertex operator,

hij�ð"Þjki

¼ i

2�

Z 1

�1
d!

X
n1n2n3

� hin3jIð!Þjn1kihn1jVZeejn2ihn2jVhfsjn3i
ð"�!� u"n1Þð"�!� u"n2Þð"�!� u"n3Þ

:

(12)

The formulas reported so far refer to the energy shifts.
The corrections to the magnetic shielding are related to the
energy shifts by ��i ¼ �EiIFðFþ 1Þ=ð�BMFhI � FiÞ,

where MF is the projection of the total momentum F. It
can be shown that for the j ¼ 1=2 reference states, ��QED

does not depend on nuclear quantum numbers. The nu-
merical calculation of ��SE was performed along the lines
developed in Ref. [16]; its details will be reported
elsewhere.
The remaining part of the QED effect is the vacuum

polarization (VP). In our calculation, we include two
dominant VP corrections induced by (i) modification
of the electron line by the Uehling potential and
(ii) modification of the hfs interaction by the free-loop VP.
Our calculational results for the SE and VP corrections

are listed in Table I, expressed in terms of the function
DðZ�Þ,

��QED ¼ �2ðZ�Þ3DðZ�Þ: (13)

The SE correction is calculated for the point nucleus,
whereas the VP part accounts for the finite nuclear size
as well as higher-order iterations of the Uehling potential.
Because of large numerical cancellations, we were able to
perform our numerical SE calculations for Z � 10 only. In
order to extend our calculations to the lower-Z ions and to
cross-check the numerical procedure, we also performed
an analytical calculation of the leading term of the Z�
expansion. The result valid for an ns state reads

DnðZ�Þ ¼ 8

9�n3

�
lnðZ�Þ�2 þ 2 lnk0 � 3 lnk3 � 1817

480

�
;

(14)

where lnk0ð1sÞ ¼ 2:984 128 and lnk3ð1sÞ ¼ 3:272 806 [9].
Details of the analytical calculation will be reported else-
where. The results of the numerical and the analytical
calculations are in good agreement.
We now turn to the effect induced by the spatial distri-

bution of the nuclear magnetic moment, also known as the
Bohr-Weisskopf (BW) correction. Following Ref. [17], our
treatment of the BWeffect is based on the effective single-
particle model of the nuclear magnetic moment.Within this
model, the magnetic moment is assumed to be induced by
the odd nucleon with an effective g factor, which is fitted to
yield the experimental value of the nuclear magnetic mo-
ment. Under these assumptions, the BW effect can be
described by the magnetization-distribution function FðrÞ
that multiplies the standard point-dipole hfs interaction

TABLE I. QED corrections to the nuclear magnetic shielding.

Z SE VP

10 �0:51 (10) 0.229

14 �0:710 (15) 0.256

16 �0:789 (9) 0.271

20 �0:927 (4) 0.302

26 �1:110 (2) 0.355

32 �1:283 (1) 0.417

40 �1:519 (1) 0.520

54 �2:029 (1) 0.775

82 �4:457 (2) 1.996

92 �7:107 (2) 2.954

TABLE II. Individual contributions to the shielding constant �� 106 for selected hydrogenlike ions, see Eq. (3).

17O7þ 43Ca19þ 73Ge31þ 131Xe53þ 209Bi82þ

Leading 143.3127 375.960 657.93 1461.6 4112

QED �0:0026 (2) �0:103 (15) �0:59 (8) �4:1 (0.8) �30 (7)

Bohr-Weisskopf �0:0013 (4) �0:061 (18) �0:54 (16) �8:2 (2.5) �42 (13)

Quadrupole �0:0007 (1) �0:018 �0:42 6.9 (0.1) 7

Recoil �0:0120 �0:015 �0:02 0.0 0

Total 143.2960 (5) 375.763 (24) 656.36 (18) 1456.3 (2.6) 4046 (15)
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VhfsðrÞ. The functionFðrÞ is induced by thewave function of
the odd nucleon, which is obtained by solving the
Schrödinger equation with the Woods-Saxon potential
(see Ref. [18] for details). The BW correction ��BW is
obtained by reevaluating the leading-ordermagnetic shield-

ing �ð0Þ with the hfs interaction Vhfs multiplied by the
magnetization-distribution function FðrÞ. The relative un-
certainty of 30% is ascribed to this correction, which is
consistent with previous error estimates for this effect [17].

Numerical results of our calculations are presented in
Table II and Fig. 2. The error of the QED correction comes
from the numerical uncertainty of the SE part and the
estimate of uncalculated VP terms (30% of the total VP
part). The error of the quadrupole contribution comes from
the nuclear quadrupole moments. The largest error is due
to the BW correction. Since this effect cannot be presently
accurately calculated, this uncertainty sets the practical
limit to which the nuclear magnetic moment can be deter-
mined from an atomic system. For very light ions, the
theoretical accuracy is limited by the recoil effect (see
Fig. 2), which is known in the nonrelativistic limit only.
Note that some of the corrections to � depend on the
nuclear g factor. This dependence, however, is so weak
that it can be safely ignored in the determination of the
magnetic moments.

Summarizing, we have presented ab initio calculations
of the nuclear shielding in hydrogenlike ions, which ac-
count for relativistic, nuclear, and QED effects. The
present theory permits determination of nuclear magnetic
moments with fractional accuracy ranging from 10�9 in the
case of 17O7þ to 10�5 for 209Bi82þ. This Letter is primarily

focused on nuclei with spin I > 1=2, but the case of I ¼
1=2 is only slightly more complicated. Then, the nuclear-
spin-independent part of gF in Eq. (1) can be canceled
approximately, by taking a difference of the g factors gF
for two different isotopes of the same element.
Modern experiments on g factors of hydrogenlike ions

have achieved the accuracy of a few parts in 1011 [19] but
so far have been restricted to ions with spinless nuclei.
Their extension to the nuclei with spin requires driving
the hfs transition and measuring the g factor of an atom
in a hyperfine excited state. These are significant compli-
cations but they do not make an experiment prohibitively
difficult [19].
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Phys. Rev. A 58, 3611 (1998).
[5] V.M. Shabaev et al., Phys. Rev. Lett. 86, 3959 (2001).
[6] R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006); P.

Mueller et al., ibid. 99, 252501 (2007); W. Nörtershäuser
et al., ibid. 102, 062503 (2009).
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FIG. 2 (color online). Individual contributions to the nuclear
shielding. ‘‘NR’’ is the nonrelativistic contribution, ‘‘REL’’ is the
relativistic point-nucleus contribution, ‘‘FNS’’ is the finite nu-
clear size correction, ‘‘QED’’ is the QED correction, ‘‘BW’’ is
the Bohr-Weisskopf correction, ‘‘REC’’ is the recoil correction,
and ‘‘QUAD’’ is the electric-quadrupole correction. Note that
the QED correction changes its sign between Z ¼ 4 and 5.
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