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We show that the chiral-symmetry-broken phase of massless QED in the presence of a magnetic field

exhibits strong paraelectricity. A large anisotropic electric susceptibility develops in the infrared region,

where most of the fermions are confined to their lowest Landau level, and dynamical mass and anomalous

magnetic moment are generated via the magnetic catalysis mechanism. The nonperturbative nature of this

effect is reflected in the dependence of the electric susceptibility on the fine-structure constant. The strong

paraelectricity is linked to the electric dipole moments of the particle-antiparticle pairs that form the chiral

condensate. The significant electric susceptibility can be used as a probe to detect the realization of the

magnetic catalysis of chiral symmetry breaking in physical systems.
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Effects of strong magnetic fields in QED have been an
active research area for many years [1]. At present, such
studies have been reactivated by the observation of very
strong fields, in the range of 1012 � 1016 G, in the surface
of stellar compact objects. Also, by both theoretical and
experimental indications that the colliding heavy ions at
RHIC and other collaborations can generate very strong
magnetic fields, estimated to be of order eH �
2m2

�ð�1018 GÞ for the top collision,
p
sNN 200 GeV, in

noncentral Au-Au impacts at RHIC, or even larger, eH �
15m2

�ð�1019 GÞ, at future LHC experiments [2].
On the other hand, the study of theories of massless

relativistic fermions has recently gained new interest in
the context of quasiplanar systems, such as pyrolitic graph-
ites (HOPG) [3,4] and graphene [5], because their low-
energy excitation quasiparticle spectrum have a linear
dispersion. The dynamics of those charge carriers is de-
scribed by a ‘‘relativistic’’ quantum field theory of mass-
less fermions in 2þ 1 dimensions [3,6].

Massless QED in the presence of a magnetic field ex-
hibits a peculiar phenomenology. Because of the Landau
quantization of the fermion’s transverse momentum in a
magnetic field, the dynamics of the lowest Landau level
(LLL) particles is (1þ 1) dimensional. This dimensional
reduction favors the formation of a chiral condensate, even
at the weakest coupling, because there is no energy gap
between the infrared fermions in the LLL and the antipar-
ticles in the Dirac sea. This phenomenon is known as the
magnetic catalysis of chiral symmetry breaking (MC�SB).
The MC�SB modifies the vacuum properties and induces
dynamical parameters that depend on the applied field.
This effect has been actively investigated for the last two
decades [7–10]. In the original studies of the MC�SB
[7–9], the catalyzed chiral condensate was assumed to
give rise only to a dynamical fermion mass. Recently,
however, it has become clear [10] that besides the dynami-
cally generated mass, the MC�SB inevitably produces
also a dynamical anomalous magnetic moment (AMM),

because this second parameter does not break any symme-
try that has not already been broken by the chiral conden-
sate and the magnetic field. The dynamical AMM leads,
in turn, to a nonperturbative Lande g factor and Bohr
magneton proportional to the inverse of the dynamical
mass. The induction of the AMM leads to a nonperturba-
tive Zeeman effect [10].
An important aspect of the MC�SB is its universal

character. It will occur in any relativistic theory of inter-
active massless fermions in a magnetic field. The MC�SB
has been proposed as the mechanism explaining various
effects in quasiplanar condensed matter systems [11].
A drawback of the MC�SB phenomenon is that the

dynamical parameters (mass and AMM) are extremely
small even at relatively high fields. Aside from the fact
that it may be experimentally challenging measuring the
magnetically catalyzed parameters, there may be cases
where other competing mechanisms are proposed to ex-
plain a given magnetic field effect. Consequently, it would
be nice to have an independent way to experimentally
distinguish the MC�SB from other possibilities. One of
the main purposes of this letter is to argue that by using
a weak electric field as a probe, one could obtain, by
measuring the induced electric polarization, compelling
evidence in favor or against the existence of MC�SB.
The electric polarization is found as minus the derivative

of the electromagnetic free energy with respect to the
applied electric field. For a weak electric field E, the
free-energy density can be expanded in powers of E as

� ¼ �0 � �E� �E2 þ . . . (1)

In a magnetized medium, the coefficients �0, �, �, etc.,
may in principle depend on the magnetic field. The sus-
ceptibility coefficient � is different from zero for ferro-
electric materials [12]. In magnetized QED it is zero,
because the second term in the right-hand side of (1)
violates parity, a symmetry that is not broken neither in
massive QED nor in the chirally broken phase of massless
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QED. The coefficient � characterizes the lowest order of
the system dielectric response. It accounts for the electric
polarization P ¼ �E induced by the applied electric field.
This term does not break any additional symmetry in (1).

The electric susceptibility � in massive QED at strong
magnetic field can be obtained from the one-loop photon
polarization operator in an external field configuration
defined by the gauge A� ¼ ð�Ex3; 0; Hx1; 0Þ, which im-

plies the existence of uniform parallel magnetic and elec-
tric fields in the x3 direction. Since the electric field is only
playing the role of a probe, while we are looking for a
strong magnetic field effect, we take the approximation,
jeEj<m2 < jeHj, wherem is the electron mass. Hence, in
the calculation of the photon polarization operator the
fermion Green’s functions depend only on the magnetic
field, while the effect of the weak electric field can be
neglected. Thus, the general covariant structure of the
polarization operator under such conditions is [13]

���ðqÞ ¼
X3
a¼1

�a

bðaÞ� bðaÞ�

ðbðaÞÞ2 ; (2)

where bðaÞ� are the orthogonal vectors, transverse to q�,

bð1Þ� ¼ �q2F̂��F̂��q� þ q2?q�;

bð2Þ� ¼ 1
2"����F̂��q�; bð3Þ� ¼ F̂��q�;

(3)

with F̂�� ¼ F��=H denoting the normalized electromag-

netic strength tensor. In (2), �a are scalar coefficients
depending on the magnetic field. At strong magnetic field,
where the electrons will all lie in the LLL, only the
coefficient �2 is different from zero. Thus, from (2) and
(3) we see that only the longitudinal components of ���,

which in turn depend only on the longitudinal momenta,
contribute in the strong-field limit. In the static limit,
q0 ¼ 0, and at small spatial momenta (for a constant and
uniform electric field, the contribution to the free energy of
powers of momentum higher than quadratic is zero, so we
do not need to consider them), the polarization-operator
coefficient �2 behaves as [13,14]

�2ðq0 ¼ 0; j ~qj ! 0Þ ’ �	jeHj
3�m2

q23: (4)

In this limit, the only component different from zero is
�00 ¼ �2. Its contribution to the electromagnetic free-
energy density is given by

���0 � 1

V

Z
A0ðx3Þ�00ðx3 � x03ÞA0ðx03Þdx3dx03

¼ ��QEDE
2; (5)

with �QED ¼ 	jeHj=3�m2, and V the system volume.

Clearly, high field values jeHj>m2 � 1013 G are required
for the electric susceptibility (�QED) to be significant.

Therefore, this polarization effect can only be relevant
for the astrophysics of compact stars and for heavy ion

collisions, where such large field strengths can exist. It is
worthy noticing, on the other hand, that the result (4) is not
valid for m ¼ 0. One can check that if the electron mass is
taken to zero and the calculations are repeated in the
strong-field limit, the electric susceptibility becomes
zero. In this case, we know that the situation cannot be
changed by any higher order perturbative contribution,
since the chiral symmetry of the massless theory is pro-
tected against perturbative corrections. Chiral symmetry,
however, can be broken nonperturbatively via MC�SB.
Our goal now is to find the electric susceptibility in the

chirally broken phase of massless QED in the presence of
uniform electric and magnetic fields along the x3-direction.
As already discussed, along with the induced dynamical
mass, the chiral condensate necessarily produces a dy-
namical AMM [10]. Here again, we are looking for a
strong magnetic field effect and treat the electric field as
a weak probe. Hence, we assume jeEj< ðE0Þ2 < jeHj,
with E0 the dynamical LLL rest energy. Accordingly, we
neglect E in the fermion propagator. The one-loop photon
polarization operator is

���ðx; yÞ ¼ �4�i	Tr½
�Gðx; yÞ
�Gðy; xÞ�; (6)

where the electron full propagator is given by

Gðx; x0Þ ¼
ZX d4p

ð2�Þ4 EpðxÞ�ðlÞ ~Glð �pÞ �Epðx0Þ; (7)

with
RP d4p

ð2�Þ4 �
P

l

R dp0dp2dp3

ð2�Þ4 , �ðlÞ ¼ �ðþÞ þ Ið1� �0lÞ
[9], and l ¼ 0; 1; 2; . . . the LL numbers. We assume
sgnðeBÞ ¼ þ. In (7) we used the Ep Ritus’ transformation

EpðxÞ ¼ P
�¼�1Ep�ðxÞ�ð�Þ (originally developed for fer-

mions in [15] and later extended to vector fields in [16]),

where �ð�Þ ¼ Iþi�
1
2

2 , � ¼ �1, are the spin projectors,

and Ep�ðxÞ ¼ Nne
iðp0x

0þp2x
2þp3x

3ÞDnð�Þ, with Dnð�Þ
denoting the parabolic cylinder functions with argument

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjp ðx1 � p2=eHÞ, normalization factor Nn ¼

ð4�eHÞ1=4= ffiffiffiffiffi
n!

p
, and positive integer index n ¼ nðl; �Þ �

lþ �þ1
2 . Equation (7) can be used to obtain the fermion

propagator in momentum space as a function of the dy-

namical mass MðlÞ and the magnetic energy Tl associated
to the AMM of each LL [10],

Glðp; p0Þ ¼ ð2�Þ4�̂ð4Þðp� p0Þ�ðlÞ ~Glð �pÞ; (8)

with

~G lð �pÞ ¼ X
�; ��¼�1

Nlð�T; ��VjjÞ � iVl
?ð�þ

? ���
?Þ

Dlð� ��TÞ �ð�Þ� ��
jj ;

(9)

and � ��
jj ¼ 1

2

�
1þ ��

�pjj
j �pjjj

�
, ��

?¼ 1
2ð1þ i�
2Þ, Nlð�T; ��VjjÞ¼

�Tl�Ml� ��Vl
jj, Dlð� ��TÞ ¼ ðMlÞ2 � ðVl

jj � � ��TlÞ2 þ
ðVl

?Þ2, Vl
jj ¼ ð1� Zl

jjÞj �pjjj, Vl
? ¼ ð1� Zl

?Þj �p?j. Here,
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�pk ¼ ðp0; 0; 0; p3Þ and �p? ¼ ð0; 0; ffiffiffiffiffiffiffiffiffiffi
2eBl

p
; 0Þ denote the

longitudinal and transverse momenta, respectively, while
Zl
jj and Zl

? are the wave-function renormalization coeffi-

cients. Because the MC�SB is an infrared phenomenon
where the magnetic field becomes the leading parameter,
the main contribution to the polarization operator comes
from the low-energy region where only fermions in the
LLL contribute. Thus, transforming (6) to momentum
space and keeping the leading contribution l ¼ 0, we
obtain

�jj
��ðqÞ ¼ �2i	jeHje�ðq2?Þ=ð2jeHjÞ Z d2p

ð2�Þ2
� Tr½
jj

��ðþÞ ~G0ð �pÞ
jj
��ðþÞ ~G0ðp� qÞ�;

(10)

with eG0ðpÞ¼P
�;�¼�1f�ð�Þ��

k =½�jpjjj�ðM0þ�T0Þ�g.
Note that only the longitudinal components of��� survive

in (10). Integrating in momenta, using Feynman parame-
trization, and dimensional regularization yields

�k
��ðqÞ ¼ ��2

bð2Þ� bð2Þ�

ðbð2ÞÞ2 ; (11)

where

��2��2	jeHj
�

e�ðq2?Þ=ð2jeHjÞ

�
2641þ 2E02

qjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2jj �4E02

q ln

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2jj �4E02

q
þqjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2jj �4E02
q

�qjj

1CA
375; (12)

with E0 ¼ M0 þ T0, the LLL rest energy. Notice that
the polarization operator (11) is transverse, q���� ¼
���q

� ¼ 0, ensuring the gauge invariance of the LLL

approximation. In the static limit, q0 ¼ 0, and infrared
region j ~qj ! 0, the coefficient ��2 behaves as

�� 2ðq0 ¼ 0; q3 ! 0Þ ’ �	jeHj
3�ðE0Þ2 q

2
3: (13)

This result indicates that the inclusion of the AMM term
does not contribute to produce Debye screening in the
infrared region. That is, at distances r > 1=E0, a charge
within this medium interacts through a normal Coulomb
potential. Comparing (13) with (4) we see that the induced
rest energy E0 plays the same role in the broken phase of
massless QED as the electron mass in massive QED. The
difference is, however, that E0 is not a fixed parameter, but
it has to be found as the solution of the Schwinger-Dyson
equation for the electron self-energy.

To find E0 we follow the results of Ref. [10], where E0

was found as the solution of the SD equation for the
electron self-energy in the ladder approximation�ðx; x0Þ ¼
ie2
�Gðx; x0Þ
�D��ðx� x0Þ, where�ðx; x0Þ is the fermion

self-energy operator, D��ðx� x0Þ is the bare photon

propagator in the Feynman’s gauge [8], and Gðx; x0Þ the
full fermion propagator (7). In the LLL, the SD equation
reduces to

1 ¼ e2ð4eHÞ
Z d4q̂

ð2�Þ4
e�q̂2?

q̂2
1

ðE0Þ2 þ q2k
; (14)

where we introduced the normalized-momentum notation
q̂2 ¼ q2=2jeHj. The solution of (14) is given by

E0 ’
ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHj

p
exp�

ffiffiffiffi
�

	

r
(15)

The electric susceptibility can be found now similarly to
the previous QED case done. From (11)–(13) and (15) we
have that the medium behaves as a linear, homogeneous,
and anisotropic dielectric, with electric susceptibility in the
x3 direction

�MC�SB ¼ 	jeHj
3�ðE0Þ2 ¼

	

6�
exp

ffiffiffiffiffiffiffi
4�

	

s
: (16)

Equation (16) shows that the susceptibility depends non-
perturbatively on the fine-structure constant and its value is
independent of the applied magnetic field. Notice the
marked difference with the QCD situation at strong mag-
netic field (jeHj � �QCD), since in QCD the MC�SB
leads to a chromo susceptibility that remains a function
of the magnetic field through the running of the strong
coupling 	s [17]. The colossal susceptibility (16) charac-
terizes the electric response of the system to an electric
field parallel to the magnetic one. At zero temperature, no
critical magnetic field strength is required to catalyze the
chiral symmetry breaking. On the other hand, even though
the magnitude of the electric polarization does not depend
on the magnetic field, for a fixed weak electric field, it must

satisfy the condition P< 	jHj
3�2 . That is, increasing H in-

creases E0, and a larger electric field probe, constrained by
the condition jeEj< ðE0Þ2 < jeHj, is allowed. We should
underline that from a physical point of view, it is natural to
expect a large anisotropic electric susceptibility in the
phenomenon of MC�SB in QED, as the ground state of
the system is characterized by pairs forming tiny electric
dipoles that can be polarized by the external electric field.
The role of the magnetic field here is to induce the pairs,
while the role of the electric field is to polarize them.
The dramatic increase of the electric susceptibility pro-

duced by the magnetically catalyzed chiral pairs can be the
best candidate to probe whether theMC�SBmechanism is
taking place or not. In a system of massless fermions in a
magnetic field, if the system exhibits a sizable electric
polarization under an applied weak electric field probe in
the direction of the magnetic field, it will be a plausible
evidence of the MC�SB phenomenon.
An important implication of this result is that the chir-

ally broken phase exhibits strong paraelectricity, a property
found in certain condensed matter systems like quantum
paraelectric (QP) materials [18] and transition metal oxides
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(TMO) [19]. In those materials, unaligned electric dipoles
are aligned in an external electric field, producing a high
electric susceptibility, often exceeding 104. In QPmaterials
the large electric susceptibility is temperature-independent
below certain critical temperature, a property attributed to
a quantum phase transition [18]. An interesting question to
explore in the future is whether the strong susceptibility
found here within a (3þ 1)-dimensional theory is also
present in quasiplanar condensed matter systems as bilayer
graphene. It is known, that the band structure of bilayer
graphene can be controlled by an applied electric field
perpendicular to the layers’ plane. The electric field creates
an electronic gap between the valence and conduction
bands with energy values that varies from zero to midin-
frared [20], depending on the field strength. Under a very
weak electric field the gap is practically zero and the
spectrum is Dirac-like. Even though this is a very peculiar
(3þ 1)D system, only formed by two layers, one could
attempt to model it with a (3þ 1)D theory of interactive
massless fermions. Because of the universality of the
MC�SB, we expect that the application of a strong mag-
netic field parallel to the weak electric one will trigger the
generation of a dynamical energy gap. Under these con-
ditions, one would expect that detecting a very large elec-
tric susceptibility in the direction of the applied fields
would signal the realization of the MC�SB mechanism.
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