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LPTMC, CNRS-UMR 7600, Université Pierre et Marie Curie, boı̂te 121, 4 Pl. Jussieu, 75252 Paris Cedex 05, France
(Received 24 March 2011; published 18 July 2011)

We provide a resolution of one of the long-standing puzzles in the theory of disordered systems. By

reformulating the functional renormalization group for the critical behavior of the random field Ising

model in a superfield formalism, we are able to follow the associated supersymmetry and its spontaneous

breaking along the functional renormalization group flow. Breaking is shown to occur below a critical

dimension dDR ’ 5:1 and leads to a breakdown of the ‘‘dimensional reduction’’ property. We compute the

critical exponents as a function of dimension and give evidence that scaling is described by three

independent exponents.
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The random field Ising model (RFIM) is one of the
archetypal disordered systems [1], and, ever since the semi-
nal work of Imry and Ma [2], its long-distance properties
have provided puzzles that largely remain pending. About
30 years ago, Parisi and Sourlas in a beautiful 2-page Letter
[3] related the critical behavior of an Ising ferromagnet
coupled to a random magnetic field to a supersymmetric
scalar field theory and showed that the supersymmetry
(SUSY) leads to a ‘‘dimensional reduction’’ (DR) property
by which the behavior of the RFIM in d dimensions is
identical to that of the system without disorder in d� 2. It
is well established that the SUSY construction for the RFIM
and the associated DR property actually break down in low
dimensions [2,4,5], but the issue has not been satisfactorily
settled. In a recent work, we showed by means of a non-
perturbative functional renormalization group (NP-FRG)
approach [6,7] that the breakdown of DR is related to the
appearance of a nonanalytic dependence of the effective
action in the dimensionless fields. Physically, this arises
from the presence of rare collective events known as ‘‘ava-
lanches’’ or ‘‘shocks.’’ However, our formalism could not at
all address the question of SUSY and its breaking. The
purpose of the present Letter is to fill this gap and provide
a complete picture of the critical behavior of the RFIM.

Our starting point is the RFIM field-theoretical descrip-
tion in terms of a scalar field�ðxÞ in a d-dimensional space
and a bare action S½�; h� given by

S ¼
Z
x

�
1

2
ð@��ðxÞÞ2 þUBð�ðxÞÞ� hðxÞ�ðxÞ

�
; (1)

where
R
x �

R
ddx, UBð�Þ ¼ ð�=2Þ�2 þ ðu=4!Þ�4, and

hðxÞ is a random magnetic field that is taken from a
Gaussian distribution with a zero mean and a variance

hðxÞhðyÞ ¼ �B�
ðdÞðx� yÞ. Taking advantage of the fact

that, at long distance, the thermal fluctuations are negli-
gible compared to those induced by disorder (formally, the
critical behavior is controlled by a zero-temperature fixed
point [1,8]), one can focus on the solution of the stochastic
field equation [3]

�S½�; h�
��ðxÞ ¼ 0: (2)

Provided the solution is unique, the correlation functions of
the � field are then obtained from appropriate derivatives
of a generating functional that can be built through stan-
dard field-theoretical techniques [9]. One first introduces

auxiliary fields, a bosonic ‘‘response’’ field �̂ðxÞ and two
fermionic ‘‘ghost’’ fields c ðxÞ and �c ðxÞ, as well as linearly
coupled sources, and one explicitly performs the average
over the Gaussian disorder. After constructing a superspace
by adding to the d-dimensional Euclidean space with
coordinates x ¼ fx�g two anticommuting Grassmann
coordinates �; �� (satisfying �2 ¼ ��2 ¼ � ��þ ��� ¼ 0),
the resulting functional can be cast in a superfield formal-
ism [3]:

Z ½J � ¼
Z

D�exp

�
�Sss½�� þ

Z
x
J ðxÞ�ðxÞ

�
; (3)

with

Sss½�� ¼
Z
x

�
� 1

2
�ðxÞ�ss�ðxÞ þUBð�ðxÞÞ

�
; (4)

where we have introduced the superfield �ðxÞ ¼ �ðxÞ þ
��c ðxÞ þ �c ðxÞ�þ ����̂ðxÞ, the supersource J ðxÞ¼JðxÞþ
��KðxÞþ �KðxÞ�þ ���ĴðxÞ, and the super-Laplacian �ss ¼
@2� þ�B@�@ ��; x ¼ ðx; �; ��Þ denotes the coordinates in

superspace and
R
x �

R
ddxd�d ��. The �-field correlation

functions are obtained by functional derivatives of Z½J �
with respect to Ĵ (evaluated for K ¼ K̂ ¼ Ĵ ¼ 0).
The action Sss is invariant under a large group of trans-

formations that mix bosonic and fermionic fields (hence
the name, SUSY): translations and rotations in the
d-dimensional Euclidean and two-dimensional
Grassmannian subspaces and ‘‘superrotations’’ that pre-
serve the superdistance, x2 ¼ x2 þ 4

�B
� ��. These superro-

tations can be represented by the generators

Q� ¼ x�@ �� þ 2
�B

�@� and �Q� ¼ �x�@� þ 2
�B

��@�. The
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presence of this SUSY, more precisely of the superrota-
tions, was shown to lead to DR [3,10]. One knows, how-
ever, that the whole formal construction collapses when the
stochastic field equation has more than one solution, which
is the case in the region of interest [5].

We propose a resolution of the above problem that
allows one to study the SUSYand its spontaneous breaking.
To this end, we upgrade our NP-FRG approach [6,7] to a
superfield formulation. The key points involve (i) adding an
infrared (IR) regulator that enforces a progressive account
of the fluctuations of both the� field and the disorder while
ensuring that the initial condition of the RG flow satisfies
the SUSY, (ii) considering copies of the original disordered
system, which gives access to the full functional field
dependence of the renormalized cumulants of the disorder,
(iii) enforcing that a single solution of the stochastic field
equation (the ground state) is taken into account for each
copy, and (iv) using the Ward-Takahashi (WT) identities
associated with the SUSY to ensure that neither the regu-
lator nor the approximations explicitly break the SUSY.We
stress that the introduction of copies (or replicas) is neces-
sary to describe nonanalyticities in the renormalized cu-
mulants stemming from the occurrence of avalanches, even
in a superfield formalism. This (unusual) combined use of
supersymmetric formalism and replicas is central for over-
coming the flaws of the Parisi-Sourlas construction.

Extending our previous work to the superfield theory, we
introduce a generating functional of the correlation func-
tions at the running scale k for an arbitrary number n of
copies of the system (coupled to the same random field but
submitted to different external sources):

Zk½fJ ag� ¼
Z Yn

a¼1

D�a exp

�
��Sk½f�ag�

� Xn
a¼1

Z
x

�
1

2
½@��aðxÞ�2 þUBð�aðxÞÞ

þ J aðxÞ�aðxÞ
�
þ �B

2

Xn
a;b¼1

Z
x1

Z
x2

� �ðdÞðx1 � x2Þ�aðx1Þ�bðx2Þ
�
: (5)

The n-copy action in the above equation is invariant under
the Sn permutational symmetry and a global Z2 symmetry
as well as the translations and rotations in the Euclidean
and Grassmannian subspaces. These symmetries are then
shared by a quadratic regulator of the form

�Sk ¼ 1

2

Xn
a;b¼1

Z
x

Z
x0
�aðxÞRk;abðx; x0Þ�bðx0Þ; (6)

with

R k;abðx; x0Þ ¼ �ab���0R̂kðjx� x0jÞ þ ~Rkðjx� x0jÞ; (7)

where ���0 ¼ ð ��� ��0Þð�� �0Þ; R̂k and ~Rk are IR cutoff

functions. The regulator is chosen such that it suppresses
the integration over modes with momentum jqj � k [6,11]

and both functions R̂k and ~Rk go to zero when k ! 0. In
addition to the above-mentioned symmetries, Zk½fJ ag� in
Eq. (5) is invariant under the superrotations when the

sources Ĵa, Ka, and K̂a are set to zero for all copies but
one. The theory then reduces to a 1-copy problem. [�Sk
can be made explicitly invariant under the same conditions
by choosing Rk;aa to be a function of the super-Laplacian

�SS only; as a result, ~Rkðq2Þ ¼ ��B@q2R̂kðq2Þ, where q

denotes the momentum in Euclidean space.] The regulari-
zation ensures that the modified stochastic field equation
has a unique solution at the microscopic scale � and
guarantees that the theory is indeed supersymmetric
when k ¼ �.
The central quantity of our NP-FRG approach is the

effective average action [11], which is the generating func-
tional of the ‘‘one-particle-irreducible vertices’’ [9] and is
obtained from logZk by a (modified) Legendre transform:

�k½f�ag� ¼ � logZk½fJ ag� þ
Xn
a¼1

Z
x
J aðxÞ�aðxÞ

� �Sk½f�ag� (8)

with�aðxÞ ¼ �ðlogZkÞ=�J aðxÞ. Its flow with the IR scale
k is described by an exact RG equation (ERGE) [11]:

@t�k½f�ag� ¼ 1
2Trfð@tRkÞP k½f�ag�g; (9)

where t ¼ logðk=�Þ and the trace involves summing over
copy indices and integrating over superspace; the modified

propagator P k;abðx1; x2Þ is the (operator) inverse of �ð2Þ
k þ

Rk, where �
ð2Þ
k ½f�ag� is the second functional derivative of

the effective average action with respect to the superfields
�aðxÞ. (Here, superscripts in parentheses always denote
functional derivatives with respect to the field arguments.)
If for each copy a single solution of the stochastic field

equation is taken into account, it is easily shown that the
random generating functional has a property of
‘‘Grassmannian ultralocality,’’ which translates into the
fact that both logZk½fJ ag� and the effective average action
�k½f�ag� have a linked expansion in sums over copies and
integrals over Grassmann coordinates:

�k½f�ag� ¼
X
p�1

Xn
a1¼1

� � � Xn
ap¼1

ð�1Þp�1

p!

�
Z
�1

� � �
Z
�p

�k;p½�a1ð�1Þ; . . . ;�apð�pÞ�;

(10)

where �að�Þ denotes a superfield at the Grassmann coor-
dinates �; �� (other coordinates are omitted for simplicity)
and �k;p depends only on p superfields at p Grassmannian

‘‘locations’’ (on the other hand, the dependence on
Euclidean coordinates is completely general). The func-
tional �k;p½�1; . . . ; �p� is related to the pth cumulant of

the renormalized disorder, and, correspondingly,

�ð1...1Þ
k;p ½�1; . . . ; �p� is related to the pth cumulant of the
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renormalized random field [6]. By inserting the above
formula in Eq. (9), taking derivatives with respect to the
superfields, and restricting the superfields to configurations
�aðxÞ ¼ �aðxÞ, one obtains a hierarchy of coupled ERGEs
for the ‘‘cumulants’’ �ð1...1Þ

k;p ½�1; . . . ; �p�. It is worth stress-

ing that, to obtain the flow equation for �ð1...1Þ
k;p ½�1; . . . ; �p�

with its full functional dependence on the p field argu-
ments, one needs to consider at least p copies. Formally,
the whole hierarchy of flow equations for the cumulants
can thus be obtained by considering an arbitrary large
number of copies. As an illustration, the ERGE for the
first cumulant reads

@t�k;1½�1� ¼ 1

2

Z
q
f@t ~Rkðq2ÞP̂k;q�q½�1�

þ @tR̂kðq2Þ ~Pk;q�q½�1; �1�g; (11)

where P̂k½�� ¼ ð�ð2Þ
k;1½�� þ R̂kÞ�1 and ~Pk½�1; �2� ¼

P̂k½�1�ð�ð11Þ
k;2 ½�1; �2� � ~RkÞP̂k½�2� are obtained as the

zeroth-order terms of the expansion of the modified propa-
gator Pk;ða;x1Þðb;x2Þ that generalizes Eqs. (7) and (10). The

above ERGE coincides with that previously derived with-
out the superfield formalism by means of an expansion in
the number of free replica sums (when evaluated at T ¼ 0).
The same is true for the ERGE for all higher-order cumu-
lants: For explicit expressions, see [6].

The (super)symmetries of the modified action in Eq. (5)
are linearly realized and induce a set of WT identities for
the one-particle-irreducible generating functional �k [9].
Taking functional derivatives of these identities with re-
spect to the superfield and evaluating the resulting relations
for superfield configurations �ðxÞ ¼ �ðxÞ leads to rela-
tions for the cumulants. The most powerful relations mix
cumulants of orders p and ðpþ 1Þ, the first nontrivial
illustration of the latter kind being

@1��
ð11Þ
k2;x1;x2

½�;�� ��B

2
ðx�1 � x�2 Þ�ð2Þ

k1;x1;x2
½��

¼ �
Z
x3

�ðx3Þ@3��ð21Þ
k2;x1;x3;x2

½�;��; (12)

which for fields that are also uniform in the Euclidean
space gives a relation similar to that for the cutoff func-

tions: �ð11Þ
k;2 ðq2;�;�Þ ¼ �B@q2�

ð2Þ
k;1ðq2;�Þ.

An important feature of the present superfield theory is
that SUSY leads to DR: This is obtained nonperturbatively
by combining the WT identity in Eq. (12) with the ERGE
for the first cumulant in Eq. (11) and by following the line
of reasoning of Ref. [10]. As one knows that DR does not
hold in a low enough dimension, what then goes wrong in
the formalism? The answer is that SUSY, more precisely,
invariance under the superrotations when the theory is
restricted to a single copy, is spontaneously broken along
the flow and that a singularity occurs. From an analysis of
the structure of the flow equations, we expect that breaking
of DR requires the presence of a linear ‘‘cusp’’ in the field

dependence of �ð11Þ
k2 , cusp that should appear at a finite

scale during the RG flow. (On the other hand, weaker

nonanalyticities in �ð11Þ
k2 and nonanalyticities in higher-

order cumulants can appear only at the fixed point, in the
limit k ! 0, thereby preserving the DR property.) This of
course must be checked in actual calculations, which is
what we provide below.
If SUSY is spontaneously broken, how can one continue

the RG flow for the effective average action? The original
formal construction a priori loses its meaning, but a non-
trivial continuation can be found if (i) one assumes that,
except for the superrotations, all of the properties and
symmetries of �k remain valid—most importantly, this
includes the ‘‘Grassmannian ultralocality’’ encompassed
in Eq. (10) that enforces single-solution dominance [12]—
(ii) one considers ERGEs only for cumulants evaluated for
generic (nonequal) field arguments, so that a putative non-
analytic dependence can freely emerge, and (iii) one modi-
fies the regulator by replacing�B by a running�k, which is
the typical strength of the renormalized random field at
scale k. More specifically, and in order to reach a fixed
point and a scale-free solution describing the critical be-

havior of the RFIM, we choose R̂kðq2Þ ¼ Zkk
2sðq2=k2Þ

and ~Rkðq2Þ ¼ �ð�k=ZkÞs0ðq2=k2Þ; Zk and �k are, respec-

tively, obtained from @q2�
ð2Þ
k1 ðq2Þ and �ð11Þ

k2 ðq2Þ evaluated

for q2 ¼ 0 at zero field, and choices for the function s are
given in Refs. [6,11,13]. From Eq. (12) and below, one can
see that, so long as SUSY is not broken, �k ¼ �BZk and
the regulator is SUSY invariant, which guarantees the
consistency of the RG description.
Finally, we provide a SUSY-compatible nonperturbative

approximation scheme for the ERGE. We combine trunca-
tions in the derivative expansion, which approximate the
long-distance behavior of the one-particle-irreducible ver-
tices, and in the expansion in cumulants of the renormal-
ized disorder. The WT identities require that the orders of
truncation in the two types of expansions be related. The
minimal truncation that can already describe the long-
distance physics of the RFIM and does not explicitly break
SUSY is the following:

�k;1½�� ¼
Z
x

�
Ukð�ðxÞÞþ 1

2
Zkð�ðxÞÞ½@��ðxÞ�2

�
;

�k;2½�1; �2� ¼
Z
x
Vkð�1ðxÞ; �2ðxÞÞ; (13)

with the higher-order cumulants set to zero. Inserted in the
ERGE for the cumulants, the above ansatz provides 3
coupled flow equations for the 1-copy potential Ukð�Þ
that describes the thermodynamics of the system, the field
renormalization function Zkð�Þ, and the 2-copy potential
Vkð�1; �2Þ from which one obtains the second cumulant of

the renormalized random field: �ð11Þ
k2 ðq2 ¼ 0;�1; �2Þ �

�kð�1; �2Þ ¼ @�1
@�2

Vkð�1; �2Þ.
To search for the fixed point that controls the critical

behavior (associated with a spontaneous breaking of the Z2
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symmetry), the flow equations must be recast in a scaled
form. The fixed point being a zero-temperature one [1,8],
the spatial decay of the correlations [see below Eq. (11)] at
criticality is now characterized by two ‘‘anomalous dimen-
sions’’ � and ��:

P̂ðrÞ � r�ðd�2þ�Þ; ~PðrÞ � r�ðd�4þ ��Þ; (14)

with � 	 �� 	 2�, and one has to introduce scaling di-
mensions involving an additional critical exponent [6]. The
resulting equations are generalizations of those shown in
Ref. [6] and are not displayed here. We have solved these
coupled partial differential equations numerically, looking
for the proper (critical) fixed point as a function of dimen-
sion (more details will be given elsewhere). This procedure
is numerically very demanding and requires handling 3
coupled equations for 2 functions of 1 variable (Uk and Zk)
and 1 function of 2 variables (�k).

An important property of the present theory is that if
in the limit �2 ! �1, �kð�1; �2Þ ¼ �k0ð�Þ þ�k2ð�Þ�
ð�1 ��2Þ2 þ � � � with � ¼ ð�1 þ�2Þ=2, then the flow
of �k0ð�Þ coincides with that of Zkð�Þ: This is precisely
the WT relation derived from Eq. (13), and DR exactly
follows. On the other hand, a spontaneous breaking of the
SUSY and of the associated WT identity occurs whenever
�k2ð�Þ diverges and �k has a cusplike singularity in the
form �kð�1; �2Þ ¼ �k0ð�Þ þ �kað�Þj�1 ��2j þ � � � as
�2 ! �1.

We find that the solution without a cusp is stable and that
�ðdÞ ¼ ��ðdÞ ¼ �Isingðd� 2Þ, in agreement with the DR
prediction, above a critical dimension dDR ’ 5:1. For d <
dDR, we obtain a once unstable ‘‘cuspy’’ fixed point (see
Fig. 1) and DR is broken: The exponents� and �� bifurcate,
with �ðdÞ< ��ðdÞ (see Fig. 2). In d ¼ 3, we find � ’ 0:57,
�� ’ 1:08, and in d ¼ 4, � ’ 0:24, �� ’ 0:40: This is in
good agreement with the existing estimates [14,15], which
gives support to the whole scenario (the results are also
1-loop exact near d ¼ 6). In addition, the continuous
variation of � and �� with d and the existence of a critical
dimension above which �ðdÞ ¼ ��ðdÞ contradict the claim

that the two exponents are always related by a fixed ratio
��ðdÞ ¼ 2�ðdÞ [16].
In conclusion, the present study provides key pieces for

a complete resolution of the long-standing puzzles associ-
ated with the critical behavior of the RFIM. In doing so, we
have developed tools that may prove useful in other con-
texts where the need to select a unique solution of a
stochastic field equation arises, as in ‘‘glassy’’ systems,
turbulence, or non-Abelian gauge field theories.
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FIG. 1 (color online). NP-FRG flow of the dimensionless
cumulant �kð’þ y; ’� yÞ in d ¼ 4< dDR for ’ ¼ 0 and for
initial conditions close to the critical point. A linear cusp in jyj
appears at a finite RG ‘‘time’’ jtj ¼ logð�=kÞ.
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FIG. 2 (color online). Anomalous dimensions � and �� versus
d. DR is observed above dDR ’ 5:1. � and �� satisfy the required
upper ( �� 	 2�) and lower bounds (red dashed lines) [1]. Crosses
correspond to simulation results [14,15]. The region just below
dDR is unfortunately numerically difficult to access.
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