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We have investigated non-Markovian dephasing by using time-resolved and spectrally resolved four-

wave mixing measurements in a layered semiconductor GaSe. When the time interval between the first

and second excitation pulses is increased, photon echo spectra exhibit narrowing only in a regime of a few

picoseconds. In the initial dephasing of these signals, fast damping is observed. The narrowing of the

spectrally resolved signal is consistent with the Fourier transformation of the time-resolved signals.

Spectral narrowing is crucial evidence of the transition from non-Markovian to Markovian dynamics. By

comparing experimental data with calculation results based on the non-Markovian theory, we have found

that the correlation time of the exciton-phonon interaction is 1.1 ps.
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A coherent light pulse induces polarization in a medium
through light-matter interaction. Since the coherence of
polarization is lost by electron-electron and electron-
phonon interactions, the investigation of the decoherence
process is important for achieving a fundamental under-
standing of these interactions. Dephasing is introduced
phenomenologically by the exponential decay term in the
optical Bloch equations [1]. This treatment is valid only in
the Markovian regime, where the time scale of observation
is longer than the correlation time of the system-reservoir
interaction. Within the correlation time, the frequency
fluctuations due to the interaction exhibit complicated
dynamics, which is referred to as non-Markovian dynamics
[2,3]. Because a large number of environmental modes,
e.g., acoustic phonons, are involved in the reservoir, the
dephasing is discussed in terms of the correlations with all
coupled modes. This approach is different from that used
for a system with a few discrete levels, e.g., excitons
coupled to optical phonons [1,4–6]. The non-Markovian
process is directly characterized by the correlation function
of the system describing frequency fluctuations; therefore
the analysis of non-Markovian dynamics is necessary to
understand the microscopic behavior of electrons.
Recently, correlation functions for non-Markovian dynam-
ics have been investigated by using four-wave mixing
(FWM) measurements in an atomic vapor, liquid water,
and some semiconductors [7–11]. The correlation of
system-reservoir interaction, i.e., the reservoir memory
effect, is the problem to be solved for quantum dynamical
systems. In addition, the understanding of the decoherence
mechanism is important for quantum information applica-
tions. The suppression of decoherence has been investi-
gated theoretically [12,13]. It has also been studied
experimentally for some materials [14–16].

In this Letter, we report the observation of non-
Markovian dephasing by using time-resolved (TR) and
spectrally resolved (SR) FWM measurements in a layered

semiconductor GaSe. Spectral narrowing was observed in
the transition from non-Markovian to Markovian dynam-
ics. We find that this spectral narrowing means the memory
loss of the reservoir due to frequency fluctuation of the
exciton-phonon interaction.
The investigated sample was a layered semiconductor

GaSe, and it was set at 3.4 K in a closed-cycle refrigerator.
The excitons in GaSe are confined to about 10 layers due to
a stacking disorder [17,18]. Further, because of this aniso-
tropic crystal structure, the exciton-phonon interaction
along the c-axis direction is stronger than that in the
perpendicular plane [19]. Optical pulses were generated
by a frequency-doubled optical parametric oscillator
pumped by a mode-locked Ti:sapphire laser tuned to the
exciton resonant energy of 2.109 eV. The pulse duration
and repetition rate were 200 fs and 76 MHz, respectively.
The first and second excitation pulses were sent into the
sample with wave vectors k1 and k2, respectively. The
diffracted signal in the direction of 2k2 � k1 was measured
at various delay times �, which are the time intervals
between the first and second excitation pulses. In order to
exclude the biexciton contribution, the polarizations of the
two excitation pulses were adjusted such that they became
cocircular. For the TR-FWM measurements, the FWM
signals were detected by employing the heterodyne tech-
nique. In this technique, acousto-optic modulators were
used to shift the frequency of the reference pulse and that
of the second excitation pulse by �1 and �2, respectively.
Then, interference of the reference pulse and the FWM
signals whose frequencies were shifted by 2�2 in the
direction of 2k2 � k1 was carried out. This interference
was detected by a photodetector to which a spectrum
analyzer was connected. The FWM signals were detected
by tuning the spectrum analyzer to frequencies of 2�2��1.
The TR-FWM signals were measured by changing the
delay time of the reference pulse relative to the FWM
signal. For the SR-FWM measurements, the FWM signals
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in the direction of 2k2 � k1 were spectrally resolved by a
monochromator and detected by a photomultiplier tube.

The measured TR-FWM amplitudes are shown in Fig. 1.
Fast damping is observed only in the initial dephasing at
delay times of 0.0, 0.2, and 0.4 ps. After the delay time of
0.4 ps, fast damping gradually disappears and then only the
Gaussian signal is observed. The half-decay times �1=2,
which are determined on the basis of the corresponding
signal peak, are plotted in the inset of Fig. 1. Initially, as the
delay times increased, the half-decay time also increased
(half-decay times are 0.35, 0.44, and 0.54 ps for delay times
of 0.0, 0.2, and 0.4 ps, respectively). Subsequently, for
longer delay times (� > 0:8 ps), the half-decay times re-
mained almost independent of the delay time at a constant
value �1=2 ¼ 0:68 ps. In the optical Bloch equations the-

ory, the TR-FWM signals for any delay times have a
Gaussian shape with a constant linewidth, which is defined
by a distribution of the resonant energies, i.e., the so-called
inhomogeneous broadening [20]. The increase in the half-
decay time with an increase in the delay time cannot be
explained by the phenomenological introduction of the
inhomogeneous broadening.

In order to clarify the development of the damping shape
with increasing delay time, the Fourier transformation of
the TR-FWM signal is performed for each delay time, as
shown in Fig. 2(a). For the delay time of 0.0 ps, a broad-
band that extends up to 5 meV is observed in the spectrum.
However, for a longer delay time of more than 1.6 ps,
the broadband extends only up to 2 meV. This shows that
the FWM spectra become narrower with increasing delay
time and that the spectral narrowing in the initial dephasing
is caused by the non-Markovian effect. Spectral narrowing
is observed not only in the Fourier transformation of the
TR-FWM signals but also in the SR-FWM measurements,
as shown in Fig. 2(b). The power spectra of the TR-FWM
signals do not exactly correspond to the SR-FWM signals,

because the time evolution of the phase factor cannot be
determined from the TR-FWM measurements. Both spec-
tra, however, are adequately consistent with each other in
terms of the spectral narrowing. In a layered semiconduc-
tor GaSe, the exciton-phonon interaction along the c-axis
direction is particularly important in the dephasing process
because of the acoustic deformation potential coupling.
This interaction has been investigated by studying the
wave-packet motion, which causes the FWM spectrum to
be asymmetric, as reported in our previous study [21].
However, this asymmetry is not critical for the spectral
narrowing of the symmetric tails.
The spectral narrowing can be explained by the non-

Markovian dynamics caused by the exciton-phonon inter-
action. In order to understand theoretically the initial de-
phasing, the theory of non-Markovian dephasing is
employed: the dephasing process is not introduced phe-
nomenologically but is treated microscopically in terms of
frequency fluctuation related to the phonon dynamics [2].
The total Hamiltonian of the electron-phonon system, H0,
is expressed as

H0 ¼ Hggjgihgj þHeejeihej (1)

with

Hgg ¼ X
k

@!k

�
byk bk þ

1

2

�
; (2)

Hee ¼ @!eg þHgg � V; (3)

V ¼ X
k

gkðbk þ byk Þ; (4)

where jgi (jei) is the eigenstate of ground (exciton) state,
whose Hermitian conjugate is represented as hgj (hej), and

FIG. 1. Time-resolved four-wave mixing amplitude as a func-
tion of the real time for various delay times �. The delay time
varies from 0.0 to 2.0 ps in 0.2 ps steps, as indicated. The origin
of the real time axis is equal to the arrival time of the first
excitation pulse. The inset shows the half-decay time �1=2 as a

function of the delay time.

FIG. 2. (a) Power spectrum for the indicated delay times. The
power spectrum is obtained from the Fourier transformation of
the time-resolved four-wave mixing signal. (b) Spectrally re-
solved four-wave mixing intensities for the indicated delay
times. The centers of the peaks are at an energy of 0 meV.
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Hgg (Hee) is the eigenvalue of the ground (exciton) state.

These eigenvalues are operators for the reservoir variables
of the phonon system, and they can be expressed by
Eqs. (2) and (3), where @ ¼ h=2� and h is the Planck
constant, !k is the frequency of the phonon mode for a
wave number k, and !eg is the exciton resonance fre-

quency. The annihilation and creation operators of the
phonon mode for the wave number k are denoted by bk
and byk , respectively. The Hamiltonian V of the exciton-

phonon interaction is expressed as in Eq. (4), where gk is
the coupling constant corresponding to the wave number k.

The equation of motion for the density matrix �ðtÞ is as
follows:

d

dt
�ðtÞ ¼ � i

@
½H0 þH1; �ðtÞ�: (5)

Before the excitation of the first pulse (t < 0), the initial
density matrix is assumed to be �ðtÞ ¼ �Rjgihgjwith �R ¼
expð��HggÞ=TrR½expð��HggÞ�. Here � ¼ 1=kBT at the

temperature T, kB is the Boltzmann constant, and TrR½A� is
the trace of all phonon modes for the arbitrary element A.
Within the electric dipole approximation, the Hamiltonian
of the radiation-matter interaction, H1, is expressed
as follows: H1 ¼ ��egEðr; tÞjeihgj ��geE

�ðr; tÞjgihej,
where �eg is the electric dipole moment and the second

term is the Hermitian conjugate of the first term. For
simplicity, we assume that �eg is independent of the

operators in the reservoir variables and that �eg is a real

number, i.e., �eg ¼ �ge. Here, Eðr; tÞ is the electric field

with the frequency!. In the two-pulse electric field Eðr; tÞ,
the first (second) excitation pulse is assumed to be the delta
function pulse whose arrival time is t ¼ 0 (t ¼ �) with the
wave vector k1 (k2) and the pulse area �1 (�2).

The FWM signal in the direction of 2k2 � k1 is ex-

pressed as Pð2k2�k1Þðr; tÞ ¼ �geTrR½�ð3Þ
eg �, where the third-

order off-diagonal density matrix element �ð3Þ
eg is propor-

tional to the third power of the electric field. The trace of all
phonon modes is calculated into the simple representation
by using the cumulant expansion method up to the second
order of V [2,3]. As a result of the cumulant expansion, the
FWM signal after the two-pulse excitation (t > �) can be
expressed as follows:

Pð2k2�k1Þðr; tÞ ¼ �i�ge�
2
2�1 exp½ið2k2 � k1Þ � r�

� exp½�i!t� exp½ið!�!egÞðt� 2�Þ�
� expf�½2Sðt� �Þ þ 2Sð�Þ � SðtÞ�g
� expfi½S0ðt� �Þ þ S0ð�Þ � S0ðtÞ�g; (6)

where SðtÞ and S0ðtÞ are defined as

SðtÞ ¼ 1

@
2

Z t

0
dsðt� sÞRe½hVðsÞVð0Þi�; (7)

S0ðtÞ ¼ 1

@
2

Z t

0
dsðt� sÞIm½hVðsÞVð0Þi� (8)

with VðtÞ ¼ exp½iHggt=@�V exp½�iHggt=@�. For the arbi-

trary element A, the thermal expectation value hAi is de-
fined as hAi ¼ TrR½A�R�, and the real (imaginary) part is
expressed as Re½A� (Im½A�). The actual exciton system has
the inhomogeneous broadening of the exciton resonances.
We assume that the inhomogeneous broadening can be
expressed by the Gaussian distribution function as follows:
gegð!Þ ¼ exp½�ð!�!0Þ2=�2

i �=
ffiffiffiffi
�

p
�i, where !0 and �i

are the center frequency and the width of the distribution,
respectively. The macroscopic polarization with the

inhomogeneous broadening, Pð2k2�k1Þ
i ðr; tÞ, is determined

by using the following equation: Pð2k2�k1Þ
i ðr; tÞ ¼R1

�1 d!eggegð!egÞPð2k2�k1Þðr; tÞ, where Pð2k2�k1Þðr; tÞ is a
function of !eg, as expressed by Eq. (6).

The FWM signal shows different behavior between
before and after the correlation time �c, which is defined
as the damping constant of the correlation function
hVðtÞVð0Þi. The dephasing behavior is approximately
expressed by using the Taylor expansion. For the non-
Markovian dynamics (t � �c), the dephasing is approxi-
mately expressed as follows:

jPð2k2�k1Þ
i ðr; tÞj ¼ �ge�

2
2�1 exp½�1

4ð�2
i þD2Þðt� 2�Þ2�;

(9)

whereD2 ¼ 2Re½hVð0ÞVð0Þi�=@2. The interaction V can be
treated as the inhomogeneous broadening characterized by
D. Irrespective of whether or not an exciton system has
inhomogeneous broadening, the correlation function indi-
cates the generation of a photon echo at twice the delay
time 2�. The Markovian dynamics (�c � t) can be ap-
proximately expressed as follows:

jPð2k2�k1Þ
i ðr; tÞj ¼ �ge�

2
2�1 exp

�
� 1

4
�2

i ðt� 2�Þ2
�

� exp

�
� 1

T2

t

�
; (10)

where 1=T2 ¼
R1
0 dsRe½hVðsÞVð0Þi�=@2. The correlation

function indicates the exponential decay, which is
expressed as a function of the dephasing time T2. The
decay shape corresponds to the phenomenological intro-
duction of the dephasing term: exp½�t=T2�. Using Eqs. (9)
and (10), spectral narrowing can be explained on the basis
of the narrowing of the inhomogeneous broadening fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i þD2
q

to �i with increasing delay time. The exciton-

phonon interaction behaves as inhomogeneous broadening
only for non-Markovian dynamics.
This non-Markovian feature can be explained qualita-

tively by assuming a phenomenological stochastic corre-
lation function [7,8]. However, in order to analyze
quantitatively the spectral narrowing, the microscopic
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treatment of the correlation function is necessary, just like
the case of the wave-packet motion [21]. The correlation
function hVðtÞVð0Þi is expressed as

hVðtÞVð0Þi ¼
Z 1

0
d!Iex-phð!Þf½nð!Þ þ 1�e�i!t

þ nð!Þei!tg; (11)

where nð!Þ ¼ ½expð@!=kBTÞ � 1��1 is the Bose-Einstein
distribution function of the phonon mode with the fre-
quency ! at the temperature T. The spectral density of
the exciton-phonon interaction Iex-phð!Þ is defined asP

kg
2
k	ð!�!kÞ. By taking into account the acoustic de-

formation potential coupling with longitudinal acoustic
phonons, the spectral density can be expressed as
Iex-phð!Þ ¼ 
2

@
2! exp½�l2!2=2u2s�, according to the

analysis results for a layered semiconductor GaSe [21].
Here 
 is the dimensionless coupling constant, l is the
confinement length of excitons in the c-axis direction, and
us is the sound velocity of the longitudinal acoustic pho-
nons which is reported as us ¼ 2:482� 105 cm=s [22].

In order to fit the calculation to the narrowing of the
FWM spectrum, the full width at quarter maximum
(FWQM) of the FWM spectrum is measured, as shown
in Fig. 3. The experimental data, which are obtained from
the FWM spectra, are consistent with the calculation re-
sults based on the non-Markovian theory. The restriction
on the fitting parameters is given by the dephasing time
T2 ¼ 1:7 ps, which is obtained from the TR-FWM signals
for the Markovian dynamics. The inhomogeneous broad-
ening of the excitons �i is measured to be 1.4 meV. The
parameters are determined to be l ¼ 2:8 nm and 
 ¼ 0:7
after fitting. These values indicate that the excitons are
localized in 7 layers and that the coupling constant is
approximately 1. These results are consistent with the
results of previous investigations [17,18,21].

The correlation time �c can be estimated from the spec-
tral density Iex-phð!Þ. More specifically, the relationship

between narrow (broad) linewidth corresponding to
Iex-phð!Þ and the long (short) correlation time is expressed

as follows: �c ¼ l=us.

The correlation time �c is calculated to be 1.1 ps by
substituting the parameters. This result indicates that the
time evolution of the correlation function can be reversed if
the second excitation pulse arrives within a few picosec-
onds, as shown in Eq. (9). In fact, the decoherence sup-
pression of the excitons in GaSe has been reported within
the non-Markovian regime (t � �c) [16].
In summary, we have observed the spectral narrowing in

the non-Markovian regime by using time-resolved and
spectrally resolved four-wave mixing measurements on a
layered semiconductor GaSe. This narrowing is conclusive
evidence of the transition from non-Markovian to
Markovian dynamics. We have demonstrated that the cor-
relation time, which defines the non-Markovian regime,
can be determined from the spectral narrowing by using the
theory of non-Markovian dephasing. The calculation based
on the non-Markovian theory reveals that the correlation
time of the exciton-phonon interaction is 1.1 ps in GaSe.
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