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We characterize gapless edge modes in translation invariant topological insulators. We show that the

edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the

occupied state bundle over the Brillouin zone. Topologically nontrivial gluing functions, corresponding to

nontrivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of

chiral edge states in two-dimensional Chern insulators, as well as helical edges in quantum spin Hall

states.
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The study of topological phases of matter has been an
exciting field of research since the discovery of the integer
quantum Hall effect (IQHE) in the 1980s. Recently, the
discovery of the quantum spin Hall effect (QSHE) [1–3]
and three-dimensional topological insulators [4–8] has
shown that interesting physics occurs even in these simple
band models. The common feature uniting these materials
is a topological ‘‘twisting’’ of the band structure over the
Brillouin zone (BZ); stated mathematically, the invariant is
the K-theory class of the occupied state vector bundle over
the BZ [9,10]. Another striking characteristic of these
materials is gapless edge modes. In specific cases, like
the IQHE or even QSHE, their existence is guaranteed
by various arguments [11–15], but it is natural to ask
whether there is a more direct connection between bulk
invariants and gapless edge modes. Certainly, there are
cases of nontrivial topology, such as stacked IQHE planes,
where edges cut parallel to the planes can be gapped.
Given that nontrivial topology by itself does not imply
gapless edge modes, when do protected gapless edge
modes occur?

In this Letter, we give a necessary and sufficient condi-
tion for protected gapless edge modes in terms of topo-
logical data that define the occupied state bundle. We study
a planar edge perpendicular to a crystal direction, giving a
preferred splitting of the BZ torus Td into d� 1 ‘‘parallel’’
directions and a ‘‘perpendicular’’ direction: Td ¼ Td�1 �
S1. With respect to this splitting, one may regard the
occupied state bundle as a bundle on Td�1, extended
trivially to Td�1 � ½0; 2��, and then glued along the
boundary (d� 1) tori at 0 and 2�. This gluing is encoded
in a function Ug:T

d�1 ! UðNÞ, where N is the number of

occupied bands. The non-Abelian Berry connection gives a
natural way to locally straighten the fibers in the perpen-
dicular direction, and Ug can then be defined via parallel

transport along the perpendicular S1:

Ugð ~kkÞ ¼ exp

�
i
Z 2�

0
A?ð ~kk; k?Þdk?

�
; (1)

where A? is the perpendicular component of the Berry
connection, and the exponential is path ordered. The gluing
functionUg has a simple interpretation in terms of localized

Wannier functions [16]: being the exponential of the per-
pendicular Berry-covariant derivative in momentum space,
Ug is, in real space, the exponential of the perpendicular

position operator, projected into the occupied bands. The
corresponding eigenfunctions are localized Wannier states
j�nðr� laÞi, where a is the unit cell spacing. Suppressing
parallel components, the j�nðr� laÞi are related to Bloch
functions junðkÞi via a generalized Fourier transform

j�nðr� laÞi ¼ 1

2�

Z
dk?eik?ðr�laÞjunðkÞi: (2)

The eigenvalues of Ug are then of the form expð2�i�nÞ,
where 1 � n � N and �n, defined modulo 1, gives real
space position of the center of the Wannier function �n

modulo the unit cell. Our central claim is that the spectrum

f�nð ~kkÞ þ lg, where l ranges over the integers, can be

continuously deformed into the edge mode spectrum.
Thus the two spectra have the same topology, so spectral
flow of edge modes is equivalent to spectral flow of the
Wannier centers. Because the latter is a property only of the
bulk, this connection yields a criterion for the existence of
protected gapless edge modes purely in terms of the bulk
band structure. After deriving the general result, we illus-
trate it by example for Chern insulators and QSH systems;
in general, it can be applied to systems in any dimension
and symmetry class.
When constructing the edge, we have a choice of bound-

ary conditions, but all such choices are deformable to each
other and hence, in the presence of a bulk gap, have the
same topology. Furthermore, in the bulk the gapped
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Hamiltonian can be continuously deformed to one which is
spectrally flat, without closing the bulk gap and hence
without changing the topology of the edge states. Thus,
we start with a spectrally flat tight binding Hamiltonian
H ¼ 1� 2P defined on an infinite lattice Zd, where

P��
rs ¼

Z
BZ

ddk

ð2�Þd e
iðr�sÞP��

k : (3)

r; s 2 Zd are discrete spatial lattice indices, k 2 Td the
dual momentum, and �;� ¼ 1; . . . ; N the band indices. Pk

satisfies P2
k ¼ Pk, and is thus a projector defining the

occupied states at momentum k. We choose a convenient
way to introduce an edge to the system by defining

He ¼ PV0ðxÞPþ ð1� PÞ: (4)

Here

V0ðxÞ ¼
�
1 for x? � 0
�1 for x? > 0;

(5)

and x? is the component of x perpendicular to the edge.He

has exponentially decaying hopping because P ¼
ð1�HÞ=2 does, and V0 is local. To the right, it approaches
the spectrally flat form Hright ¼ 1� 2P exponentially fast,

while to the left it approaches the trivial atomic limit with
negative chemical potential, Hleft ¼ 1. Thus it models a
boundary between topological insulator and vacuum. Since
P and 1� P act in orthogonal blocks, the entire spectrum
of He, aside from the trivial eigenvalue 1, is contained in
PV0ðxÞP.

To analyze the spectrum ofPV0ðxÞP, we first note that ~kk,
the momentum parallel to the cut, is conserved, so that we

can study each ~kk sector separately. We first prove that the

spectrum of PV0ðxÞP, in each ~kk sector, is discrete. These
discrete levels correspond to edge subbands; in contrast to a
generic gapped Hamiltonian, the special one defined in (4)
has no band continuum, but rather only accumulation
points at �1, corresponding to edge subbands penetrating
further and further into the bulk. Demonstrating this for

fixed ~kk is effectively a one-dimensional problem, so to

avoid cumbersome notation we simply drop ~kk and assume

we have a one-dimensional system in the following proof.
It is useful to view P as a matrix with respect to the

partition of the Hilbert space to the left and right of the cut:

P ¼ PLL PRL

PLR PRR

� �
: (6)

PLR, PRL are compact operators, since their matrix ele-
ments decay exponentially, implying that PLL þ PRR ¼
P� PLR � PRL has a discrete spectrum with possible
accumulation points at 0; 1. Since PLL and PRR act in
orthogonal subspaces, they have discrete spectra as well,
as do HLL=RR ¼ 1� 2PLL=RR. The latter have accumula-

tion points at �1. Elementary computation now gives

PV0ðxÞP�ð1�PÞV0ðxÞð1�PÞ ¼ �HLL 0
0 HRR

� �
: (7)

Since PV0ðxÞP and ð1� PÞV0ðxÞð1� PÞ act in orthogonal
subspaces, both must have discrete spectra with possible
accumulation points at �1, as desired. We note here that
the spectrum ofHRR is directly related to the entanglement
spectrum [17–25] via Peschel’s construction [24]. Under
mild nondegeneracy assumptions, namely, the lack of bulk
occupied states localized exactly on one side of the cut, the
spectra of PV0ðxÞP and HRR are actually the same.
We now deform the spectrum of PV0ðxÞP to that of

ð1=2�iÞ logUg. This deformation will be continuous in ~kk
and preserve discreteness at each fixed ~kk, thus preserving
topological properties as well. For convenience we again

fix ~kk to work with a one-dimensional system in the follow-

ing argument. Recall that ð1=2�Þ logUg has spectrum

f�n þ lg, where 0 � �n < 1 and l 2 Z. We first reinter-
pret this as the spectrum of the Berry gauge-covariant
derivative �irB ¼ �i@k? þ A? acting on sections of the

occupied state bundle. Indeed, defining a covariantly con-
stant frame junðk?Þi we see, using (1), that junð2�Þi ¼
ðUgÞmn jumð0Þi; we can furthermore ensure that Ug is diago-

nal in the latter expression. Then the eigenfunctions of
�irB are localized Wannier states �nðr� laÞ ¼R
dk?½expik?ð�n þ lÞ�junðk?Þi which have eigenvalues

�n þ l, as desired. Note also that, as an operator on
Hilbert space, �irB ¼ Pð�i@k?ÞP ¼ Px?P. Thus, all

we have to do is deform the operator PV0ðxÞP to Px?P.
Define

VtðxÞ ¼
��x? for jx?j< 1=ð1� tÞ
�sgnðx?Þ=ð1� tÞ for jx?j � 1=ð1� tÞ: (8)

Then VtðxÞ interpolates between V0ðxÞ and x?, and
PVtðxÞP is the desired deformation. Indeed, for t < 1,
PVtðxÞP is a finite rank perturbation of ð1� tÞ�1PV0P,
acting only at jx?j< 1=ð1� tÞ, and thus cannot produce a
continuous spectrum. For t ¼ 1 a slight subtlety arises:
Px?P is not a bounded operator. To make a rigorous
statement we define a bounded continuous function hðyÞ
such that hðyÞ ¼ y on ½�W;W� and hðyÞ ¼ sgnðyÞW for
jxj>W, for some large W. Then one can check that the
spectrum of the uniformly bounded family of operators

hðPVtPÞ is jointly continuous in t 2 ½0; 1� and ~kk. This is
just the statement that as one goes from PV0ðxÞP to
PV1ðxÞP, the spectrum evolves uniformly continuously in
any finite window ½�W;W�.
We have thus proven that the spectrum of the logarithm

of Ug and the edge spectrum have the same topology. We

now illustrate our result for Chern insulators and time
reversal invariant systems in two dimensions.
Chern insulators.—Time reversal breaking insulators in

two dimensions are characterized by an integer Chern
number. The simplest realization of nonzero Chern number
has one filled band, corresponding to a line bundle over the
T2 BZ. The transition function discussed above is a map
from S1 � T2 toUð1Þ, and the element of�1ðS1;Uð1ÞÞ¼Z
which it defines is equal to �. The spectrum of its logarithm
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has � protected modes spiraling up, just as the edge spec-
trum, consistent with our picture; see Fig. 1.

More quantitatively, we can see spectral flow directly by
evaluating [26]

� ¼ 2�iTrðP½½P;�x�; ½P;�y��Þ; (9)

where now �x;y are projections onto the positive x and y

half-planes, respectively. The topological nature of � gives
us a lot of freedom to deform the expression (9). In
particular, with translation symmetry one can deform the
�x;y into linear functions X; Y (replacing sums with inte-

grals), obtaining the usual expression for � as the integral
of the Berry curvature over the BZ [26]. Now take an
entanglement cut along y (so that x ¼ x? and y ¼ xk).
Then it is most useful to deform only �y:

� ¼
Z

dky TrCðkyÞ; (10)

where CðkyÞ ¼ Pky½½Pky ;�x�; @Pky=@ky�. We evaluate (10)

in the basis jc nðkyÞi of eigenstates of PkyV0ðxÞPky :

PkyV0ðxÞPky jc ni ¼ �njc ni: (11)

Using (7) and the fact that
@Pky

@ky
jc ni ¼ @

@ky
jc ni is orthogo-

nal to jc ni, we obtain

hc njCðkyÞjc ni ¼ @

@ky
hc nj�xjc ni ¼ @

@ky

�
1þ �n

2

�
:

Thus (10) is the integral of a total derivative, resulting in
the expression � ¼ P

n½�nð2�Þ � �nð0Þ�=2. Now,
�nð2�Þ ¼ �nþkð0Þ for some k which is easily seen to be
independent of n (the case of degenerate �n must be
handled carefully, but all level crossings can be appropri-
ately resolved). k is simply the number of edge modes that
have to cross any given Fermi level. The sum then tele-
scopes and we obtain � ¼ k, as desired.

Continuum Chern insulators [25,27].—As a check of the
above results, one would like to have a direct calculation of
the spectrum of HRR ¼ 1� 2PRR. This is tedious for a
lattice Chern insulator, but easily doable in the continuum,

i.e., for the IQHE. One problem is that the continuum BZ is
not a finite torus; nevertheless, we will satisfy ourselves

with demonstrating spectral flow as ~kk ranges over the

momentum scale corresponding to the inverse magnetic
length ‘�1. We will work on a semi-infinite cylinder of
large radius; this only introduces a fine discretization of the

domain ~kk of the plots.
The bulk Hamiltonian H ¼ 1� 2P gives energy �1 to

the � lowest occupied Landau levels, and energy 1 to all
higher levels. Its eigenvalues are labeled by kk and a

Landau level number, and the eigenstates are localized
harmonic oscillator functions in the x? direction. The
truncated Hamiltonian HRR, written in this basis, contains
Landau level mixing terms. Letting n;m ¼ 0; . . . ; �� 1
denote occupied Landau levels, ðHRRÞnm is equal to

�nm � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþm�n!m!

p
Z u0

�1
dueu

2ð@nue�u2Þð@mu e�u2Þ: (12)

Here u0 ¼ kk‘ and u ¼ x?=‘þ u0.
For example, for � ¼ 2 the eigenvalues of ðHRRÞnm are

plotted in Fig. 2; we see that both branches cross any given
value of �, displaying spectral flow.
Quantum spin Hall systems.—QSH insulators are char-

acterized by a nonzeroZ2 invariant. With a choice of gauge
one can express it in terms of Pfaffians [1] or as an
obstruction to trivializing the occupied state bundle in a
way compatible with T [16]. These are equivalent to the
gluing function constructed above being nontrivial. Indeed,
since the spectrum of the gluing function is given by the
positions of the Wannier centers, a nontrivial gluing func-
tion is equivalent to Kramers pair-switching spectral flow
of the time reversal polarization, an equivalent formulation
of the Z2 invariant [16].

Because T symmetry relates Hð ~kÞ to Hð� ~kÞ, the spec-
trum ofUgðkkÞ is the same as that ofUgð�kkÞ, and because
T2 ¼ �1 requires an even number of bands, the gluing
function can be thought of as a map Ug:½0; �� ! Uð2NÞ.
The extra constraint TUgT

�1 ¼ U�1
g at the T symmetric

end points kk ¼ 0; � forces the spectra at those points to

form Kramers pairs. The nontrivial class now switches
elements in these Kramers pairs as one moves from 0 to
� [formally the classification is given by the relative
homotopy group �1ðUð2NÞ; UðNÞÞ ¼ Z2].
The key point now is that the deformation between the

spectrum of 1
2�i logUg and the edge spectrum respects T

(a) (b)

FIG. 1. Spectrum of gluing function (top) and entanglement—
or edge—spectrum (bottom) for (a) a Chern insulator with one
occupied band and � ¼ 1 and (b) a minimal quantum spin Hall
system with nontrivial Z2 invariant.

FIG. 2 (color online). Entanglement spectrum flow for � ¼ 2
Landau levels.
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throughout, so Kramers partner switching in the edge
spectrum is an equally good criterion for QSH topological
order. The simplest example consists of two time-reversed
filled bands, with the two eigenvalues of the gluing func-
tion splitting up as one moves away from ky ¼ 0, travers-

ing by� in opposite directions and rejoining at ky ¼ �; the

helical edge spectrum shares this property, consistent with
our result (Fig. 1).

Generalizations.—We related only one particular gluing
function to edge modes. By considering the other d� 1
possible cuts, we gain more information. In particular, if
the edge modes for all d cuts are gapped, our construction
shows that the insulator is topologically trivial, i.e., can be
adiabatically connected to a trivial insulator in the atomic
limit. Furthermore, we can perform similar arguments in
other dimensions and symmetry classes, e.g., 3D topologi-
cal insulators [28].

Another generalization concerns our formula for the
Chern invariant in terms of the entanglement spectrum.
We can in fact apply it to any mixed state 	 that is trans-
lationally invariant in y. What does such an invariant
represent?

To answer this we construct the purification of our

density matrix. Consider 	 ¼ Z�1e�
P

H��

rr0 �
y
�r��r0 . We

now double the number of sites and consider the
Hamiltonian

HAW ¼ X
r�r0�

�
n� 1

2

�
��

rr0
�y

�r��r0 þ
�
1

2
� n

�
��

rr0
~�y
�r

~��r0

þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞ

p
���
rr0

~�y
�r��r0

þ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞp ���

rr0 �
y
�r

~��r0 ; (13)

where n ¼ 1
1þeH

is the Fermi-Dirac operator and ~� are the

Fermi operators on the auxiliary system. Writing in block
form the single particle Hamiltonian of HAW, it is

hWA ¼ n� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞp

1
2 � n

 !
:

It is easy to check that hWA is of the form P� 1
2 , P a

projector. Hence, HAW is spectrally flat, describing two
bands of energies �1=2 and 1=2. The ground state is the
purification of our state 	, also known as the Araki-Wyss
representation [29]. For a system with decaying two point
function, one can check that n has decaying matrix ele-
ments. Thus the HAW above describes a bilayer system
coupled in the bulk, rather than through an edge. Indeed,
for a generic thermal state the entanglement entropy asso-
ciated with H is extensive. However, if H is coming from
tracing half of a system at zero temperature, the coupling

terms, proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞp

, will vanish exponentially
inside the bulk, since nð1� nÞ ¼ 0 whenever n¼0 or
n ¼ 1, and we are left with a bilayer which is only coupled
close to the boundary. Thus, the entanglement Chern

number represents the Chern invariant of the associated
bilayer Araki-Wyss system.
Conclusions.—We have shown that the edge modes of a

topological insulator are a continuous deformation of the
spectrum of a gluing function defining the occupied state
bundle over the BZ, giving a necessary and sufficient
condition for protected gapless edge modes.
We thank B.A. Bernevig, M. Freedman, and especially

A. Turner for useful discussions. I. K. acknowledges finan-
cial support from NSF Grant No. DMR-0956053.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

[3] M. Koenig, S. Wiedmann, C. Bruene, A. Roth, H.
Buhmann, L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang,
Science 318, 766 (2007).

[4] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)
(2007).

[5] R. Roy, Phys. Rev. B 79, 195322 (2009).
[6] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[7] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[8] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. Hor, R. Cava, and

M. Hasan, Nature (London) 452, 970 (2008).
[9] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[10] A. Kitaev, arXiv:0901.2686.
[11] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[12] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[13] X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74,

045125 (2006).
[14] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[15] Y. Hatsugai, Phys. Rev. B 48, 11 851 (1993).
[16] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
[17] H. Li and F. D.M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[18] R. Thomale, A. Sterdyniak, N. Regnault, and B.A.

Bernevig, Phys. Rev. Lett. 104, 180502 (2010).
[19] N. Bray-Ali, L. Ding, and S. Haas, Phys. Rev. B 80,

180504 (2009).
[20] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010).
[21] A.M. Turner, Y. Zhang, and A. Vishwanath,

arXiv:0909.3119.
[22] T. L. Hughes, E. Prodan, and B.A. Bernevig,

arXiv:1010.4508 [Phys. Rev. B (to be published)].
[23] A.M. Turner, Y. Zhang, R. S. K. Mong, and A.

Vishwanath, arXiv:1010.4335.
[24] I. Peschel, J. Phys. A 36, L205 (2003).
[25] I. Klich, J. Phys. A 39, L85 (2006).
[26] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
[27] I. D. Rodrı́guez and G. Sierra, Phys. Rev. B 80, 153303

(2009).
[28] R. S. K. Mong and V. Shivamoggi, Phys. Rev. B 83,

125109 (2011).
[29] H. Araki and W. Wyss, Helv. Phys. Acta 37, 136

(1964).

PRL 107, 036601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JULY 2011

036601-4

http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://arXiv.org/abs/0901.2686
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.25.2185
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevLett.71.3697
http://dx.doi.org/10.1103/PhysRevB.48.11851
http://dx.doi.org/10.1103/PhysRevB.74.195312
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevB.80.180504
http://dx.doi.org/10.1103/PhysRevB.80.180504
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://arXiv.org/abs/0909.3119
http://arXiv.org/abs/1010.4508
http://arXiv.org/abs/1010.4335
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1088/0305-4470/39/4/L02
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.80.153303
http://dx.doi.org/10.1103/PhysRevB.80.153303
http://dx.doi.org/10.1103/PhysRevB.83.125109
http://dx.doi.org/10.1103/PhysRevB.83.125109

